GPT4限制被破解!ChatGPT实现超长文本处理的新方法
目录
前言
使用chat-gpt过程中有哪些痛点
1.无法理解人类情感和主观性
2.上下文丢失
3.约定被打断
那如何去解决这个痛点
Transformer(RMT)怎么去实现的
1.Transformer 模型
2.RMT模型
3.计算推理速率
4.渐进学习能力
总结
写到最后
大家好,我是AI大侠,AI领域的专业博主
前言
ChatGPT已经成为了一款备受欢迎的工具,它可以帮助用户解答问题、写代码、翻译,甚至可以通过它学习更多行业的知识。然而,博主在使用ChatGPT时会发现它还不够智能,有时候不能够完全理解用户的意思,答非所问,下面是博主在使用中遇到的痛点
使用chat-gpt过程中有哪些痛点

1.无法理解人类情感和主观性
尽管ChatGPT可以根据上下文理解用户的输入,但它仍然无法真正了解用户的意图,ChatGPT只能根据输入数据和算法进行分析和回答,无法真正理解人类的情感和主观性。这种局限性可能导致一些误解和问题。
2.上下文丢失
与ChatGPT进行对话时,它能够记住上下文,并在后续回答中考虑之前的内容。但是,博主在使用过程中经常会出现ChatGPT忘记之前的对话,这可能是由于单次请求中Token数量的限制或是ChatGPT会话长度的限制所导致的。
3.约定被打断
如果在会话中如果有很多其他的问答,ChatGPT可能会在继续下一步时忘记之前的约定,需要再次约定才会保持下去
那如何去解决这个痛点
这几个痛点我想使用过gpt的小伙伴都深有体会,那如何去解决这些问题呢。其实openAI已经给出了答案。
在发布gpt4的时候,最大的变化除了新数据模型的发布,还有一个重要的技术点更新:上下文token默认为8K 最长32k(约50页文本) 这代表可以可以处理更长的对话 以及 更深层次的语义分析。这也是gpt4更智能好用的原因。
但如果把这个token提升到200万个,那又会发生什么,
AI 模型使用的是非结构化文本,常用 Token 表示,以 GPT 模型为例,1000 个 Token 约等于 750 个英文单词
一篇在AI界热论的论文给出了答案,《Scaling Transformer to 1M tokens and beyond with RMT》它可以把Transformer 的 Token 上限扩展至 100 万,甚至更多。

Transformer(RMT)怎么去实现的
1.Transformer 模型

Transformer 是一种神经网络模型,是迄今为止最新和最强大的模型之一,常用于处理上下文学习语义含义。
我们来看看gpt4的上下文处理模型为什么只能达到8-32k,因为transformer 的可输入长度取决于内存大小,这意味着实现太长的token不现实,Transformer 存在一个关键问题,即其注意力操作的二次复杂度,这导致将大模型应用于处理较长序列变得越来越困难。然而,通过利用特殊的记忆 token 实现记忆机制的 Recurrent Memory Transformer(RMT)模型,有效上下文长度能够增长到百万级,这带来了新的发展前景。
2.RMT模型
RMT 全称Recurrent Memory Transformer(递归记忆Transformer)
递归记忆Transformer(RMT)是一种基于记忆机制的序列建模架构,用于存储和处理序列数据中的局部和全局信息,并通过递归传递信息来处理长序列中的段之间的依赖关系。
相较于标准Transformer模型的实施,RMT仅通过对输入和输出序列进行修改而无需修改底层模型架构。模型通过训练过程中的记忆操作和序列表示处理来掌控记忆机制的行为。
具体而言,RMT采用记忆token的方式将记忆信息添加到输入序列中,从而为模型提供额外的容量,以处理与输入序列中任意元素无直接关联的信息。为了应对长序列的挑战,RMT将序列分割为不同的段,并通过记忆传递机制将上一段的记忆状态传递到当前段。在训练过程中,梯度通过记忆传递的路径从当前段向前一段流动,从而实现信息的回传和更新记忆状态的目的。
这意味着扩展了token的数量,如果达到理想的200万,我们可以将整部小说甚至更多内容输入到GPT中,而无需依赖上下文来理解用户的信息。这种改进使得GPT能够更准确地处理输入,并提供更精准的回复。现在,试想一下,如果我将整篇《红楼梦》输入到GPT中,是否可以让它帮我续写这个经典作品呢?
3.计算推理速率

从论文的计算结果中可以很直观地观察到,推理时间与输入序列长度呈线性关系。
在处理包含多个片段的大型序列时,递归记忆Transformer(RMT)模型可能比非循环模型更有效率。
这意味着在GPT模型中输入更多内容,可以让模型更深入地理解用户的意图,从而提供更准确的答复。
如果将自己的聊天信息和朋友圈动态等数据导入GPT模型,并让它进行理解和吸收,是否能够快速生成一个完整的虚拟人格呢?如果token达到这个量级 完全是可实现的,这就有些恐怖了
4.渐进学习能力
论文中还指出,随着输入数量的增加,机器学习模型学习到的结果也变得更加准确。

这意味着输入更多的数据可以显著提升模型的性能和预测准确度。
总结
这项技术将使得ChatGPT的能力上限被突破。这也让ChatGPT的痛点得以解决,使得它更完美。
我们甚至可以将整个项目的代码交给GPT,并明确告诉它我们的需求,它将能够直接开始处理后续需求、修改代码并进行优化以及后面的需求迭代。
写到最后
每天在AI领域都有令人震撼的进展,各种新技术层出不穷。有幸生活在这个充满创新的时代,你准备好了吗
AI是一个充满机遇和挑战的领域,
AI时代已经到来,AI真的会取代我们吗?
你还不主动了解AI?
你还在为跟同事聊AI插不上话吗?
那请关注大侠,带你了解AI行业第一动态。

相关文章:
GPT4限制被破解!ChatGPT实现超长文本处理的新方法
目录 前言 使用chat-gpt过程中有哪些痛点 1.无法理解人类情感和主观性 2.上下文丢失 3.约定被打断 那如何去解决这个痛点 Transformer(RMT)怎么去实现的 1.Transformer 模型 2.RMT模型 3.计算推理速率 4.渐进学习能力 总结 写到最后 大家好…...
奋斗,然后成功:我的架构狮之梦
与代码结缘 2018年,当时听说了一个很厉害的人——吴瀚清老师,也就是大家所熟知的“道哥”。关于他的事情有很多传说,于是我也很快成为了他的小迷弟,把吴瀚清老师当成了自己的偶像。 也是那一年,我买了人生中第一本关…...
自定义属性,v-bind computed的使用
0.0 自定义组件的使用 【掌握】 先自定义自己的组件 引入组件 import 组件名 from 路径/文件名 注册组件 <script> export default {components:{ // 组件注册组件名:组件名,组件名1},data(){ // 数据return {}},methods:{ // 方法} } </script&…...
解决城市内涝的措施有哪些?需要用到哪些监测设备?
随着城市化的不断推进,城市内涝问题日益凸显。极端天气事件如暴雨、台风等对城市基础设施和居民生活造成了严重影响。那么,解决城市内涝的措施有哪些?需要用到哪些监测设备?针对上述问题,本文会为大家一一进行讲解。 解决城市内涝的措施有哪…...
Spark大数据处理讲课笔记----Spark任务调度
零、本节学习目标 理解DAG概念了解Stage划分了解RDD在Spark中的运行流程 一、有向无环图 (一)DAG概念 DAG(Directed Acyclic Graph)叫做有向无环图,Spark中的RDD通过一系列的转换算子操作和行动算子操作形成了一个…...
【22-23春】AI作业10-经典卷积网络
1.LeNet & MNIST LeNet是一种神经网络的模型,用于图像识别和分类。他包含 3 个卷积层,2 个池化层,1 个全连接层。其中所有卷积层的所有卷积核都为 5x5,步长 strid1,池化方法都为全局 pooling,激活函数…...
第13章_约束
第13章_约束 1. 约束(constraint)概述 1.1 为什么需要约束 数据完整性(Data Integrity)是指数据的精确性(Accuracy)和可靠性(Reliability)。它是防止数据库中存在不符合语义规定的数据和防止因错误信息的…...
GPC规范--安全域基础概念
概述: 分为三种主流类型: 1、发卡方安全域(Issuer Security Domain, ISD),卡片上首要的、强制性存在的安全域,是卡片管理者(通常是发卡方)在卡片内的代表; 2、补充安全域(Supplementary Security Domain&am…...
C++初阶--C++入门之基础学习
0.前言 C是一门非常好的编程语言,但可能在学习C的过程中会遇到很多困难。人们常说 “一个人走得很快,一群人会走的更远”, 所以就让我们一起攻坚克难,一起征服C吧!从本章开始,我们将开始C的基础学习&#x…...
服务器虚拟化部署
服务器虚拟化部署 1、背景2、目的3、环境4、部署4.1、部署VMware ESXi4.1.1、准备工作4.1.2、部署ESXi4.1.3、配置ESXi4.1.4 、部署虚拟机 1、背景 项目上利旧9台服务器,项目需要使用15台服务器,外购已经没有项目硬件采购预算,只能从目前的…...
实验篇(7.2) 01. 实验环境介绍 远程访问 ❀ Fortinet网络安全专家 NSE4
【简介】学习NSE4,如果只看文章而不动手做实验,就象耍流氓。为了有效的巩固学习到的内容,建议经常动手做实验。实验不怕出错,身经百战后,再在生产环境部署和配置FortiGate防火墙,就会做到胸有成竹。 虚拟实…...
ThinkPHP6 模型层的模型属性,表映射关系,以及如何在控制层中使用模型层和模型层中的简单CRUD
ThinkPHP6 模型层的模型属性,表映射关系,以及模型层的CRUD及如何在控制层中使用模型层 1. model 模型层的默认映射规则 模型,即mvc模式中的model层,model层用来对接数据库,操作数据库的增删改查。 在tp6中ÿ…...
CodeForces.1806A .平面移动.[简单][判断可达范围][找步数规律]
题目描述: 题目解读: 给定移动规则以及起始点,终点;分析终点是否可达,可达则输出最小步数。 解题思路: 首先要判定是否可达。画图可知,对于题目给定的移动规则,只能到达起始点(a,b…...
Linux系统编程学习 NO.4 ——基础指令学习、操作系统时间的概念、文件压缩包的概念
1.时间相关的概念以及指令 1.1.时间相关的指令 1.1.1.date指令 date可以指定时间显示的格式:date 指定格式 选项 %H:小时 %M:分钟 %S:秒数 %Y:年份 %m:月份 %d:日 %F:相当于%Y-%m-%d %X:相当…...
leecode 数据库:601. 体育馆的人流量
导入数据: Create table If Not Exists Stadium (id int, visit_date DATE NULL, people int); Truncate table Stadium; insert into Stadium (id, visit_date, people) values (1, 2017-01-01, 10); insert into Stadium (id, visit_date, people) values (2, 20…...
gym不渲染画面的解决方案(gym版本号0.26.2)
确认gym版本号 我安装了新版gym,版本号是0.26.2,不渲染画面的原因是,新版gym需要在初始化env时新增一个实参render_mode‘human’,并且不需要主动调用render方法,官方文档入门教程如下 import gym import numpy as n…...
如何在 Fedora 37 上安装 FileZilla?
FileZilla 是一款流行的开源 FTP(文件传输协议)客户端,它提供了一个直观的界面来管理和传输文件。本文将详细介绍如何在 Fedora 37 上安装 FileZilla。以下是安装过程的详细步骤: 步骤一:更新系统 在安装任何软件之前…...
网终安全技术(刘化君)课后被略的答案
目录 8.HTTP客户机与Wb服务器通信通常会泄露哪些信息? 9.在TCP连接建立的3次握手阶段,攻击者为什么可以成功实施SYN Flood攻击?在实际中,如何防范此类攻击? 常用的网络漏洞扫描技术有哪几种?试举例说明。…...
架构思想之DDD
领域驱动设计(Domain-Driven Design,简称DDD)是一种架构思想,旨在通过将业务问题领域化,将业务逻辑放在核心领域中,以实现更好的软件设计和可维护性。下面将介绍如何实现DDD的Java实现,包括如何…...
FinClip | 2023 年 4 月产品大事记
我们的使命是使您(业务专家和开发人员)能够通过小程序解决您的关键业务流程挑战。不妨让我们看看在本月的产品与市场发布亮点,看看它们如何帮助您实现目标。 产品方面的相关动向👇👇👇 全新版本的小程序统…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
