当前位置: 首页 > news >正文

庄懂的TA笔记(十七)<特效:屏幕UV + 屏幕扰动>

庄懂的TA笔记(十七)<特效:屏幕UV + 屏幕扰动>

大纲:

目录

庄懂的TA笔记(十七)<特效:屏幕UV + 屏幕扰动>

大纲:

正文:

一、屏幕UV:

二、屏幕扰动:

三、任务委托:


正文:

一、屏幕UV:

1、案例展示:

屏幕UV在过往案例使用中,出现了 镜头畸变,纹理大小不能锁定等问题,这节内容就把屏幕UV使用全部讲完

这个效果中是 没有边缘畸变的,到边缘是完完整整的平铺上去的。所以屏幕UV 的重点就在这两个部分。

畸变解决:

纹理大小锁定:

2、实现思路:

主图透贴纹理UV + 屏幕纹理UV流动 = 最终ScreenUV效果;

3、代码实现:

①、面板参数定义:

_MainTex : (RGB : 颜色 A : 透贴 ,2d)="gray"{}

_Opacity :("透明",range(0,1))=0.5

这里屏幕坐标纹的Tillng 和 offset是要用到的,所以需要追加_ST。

_ScreenTex : ("屏幕纹理" , 2d) = "black"{}

②、输出结构:

因为需要用到 主图UV 屏幕UV ,所以这里要定义出,uv,和 screenUV.

③、顶点shader输入输出:

float3 posVS = UnityObjectToViewPos(v.vertex).xyz; // 获取顶点位置到摄像机位置的xyz。

o.ScreenUV1 = posVS.xy;//赋值给屏幕UV 。

        像素shader:               (中间输出测试监测)

float3 var_ScreenTex = tex2D(_ScreenTex,i.ScreenUV1);

return float4(var_ScreenTex,1);

重点:屏幕UV 位置,畸变修正,纹理大小锁定。

取屏幕空间UV位置,取xyz三个轴,

如何理解Vive空间呢?Vive空间相当于以摄像机平面为基准的空间,XY轴对应UVZ轴对应深度

但是,正常我们将 XY轴向的UV采样后,会发现贴图模型表面有畸变

如图:

解决方法: 也很简单,直接xy z 深度 就好了。

o.screenUV = posVS.xy / posVS.z; // VS空间畸变校正


但矫正过后,还会有一个问题,就是你的屏幕UV纹理相对于你的屏幕Tiling大小是不随距离改变的,正常是模型纹理,会随距离,近大远小的,所以这里我们需要屏幕UV纹理进行锁定

如图;

解决方法:得到观察空间的距离,第一个就需要获得模型的原点.

UnityObjectToVivePos float3(0,0,0).z

声明一个orignDist模型原点,到 距离摄像机的距离

float3 orignDist = UnityObjectToVivePos(float3(0,0,0)).z;

然后 在将 屏幕UV * 距离(模型到相机的距离) = 锁定后的屏幕UV.(锁定屏幕UV);

o.screenUV = posVS.xy / posVS.z; // VS空间畸变校正

o.screenUV *= originDist; // 纹理大小按距离锁定

o.screenUV * = orignDist; or o.screenUV = o.screenUV * orignDist两种方式等价

综上所属,主要问题就解决了。

如图:


④、屏幕UV滚动:

这里就控制Tilingoffset 流动起来,

ScreenTex_ST. X Y 对应 TilingX Y ;

ScreenTex_ST. Z W 对应 offsetZ W ;

o.screenUV = o.screenUV * _ScreenTex_ST.X Y - frac(_Time * _ScreenTex_ST.Z W);

(这里 的 + - 都可以用,主要是控制 流动方向的)

o.screenUV=o.screenUV*_ScreenTex_ST.xy - frac(_Time.x * _ScreenTex_ST.zw)启用屏幕纹理ST

如图:


⑤、像素shader:

采样 两张图两个UV主贴图屏幕空间贴图。

混合透明 = 主图var_MainTex.a * 不透明_Opacity * 屏幕贴图var_ScreenTex;

float3 FinalRGB = var_MainTex.rgb ;

float opacity = var_MainTex.a * _Opacity * var_ScreenTex;

return float4 (FinalRGB * opacity , opacity);

4、核心代码:

重要的就是这一段, (屏幕UV 矫正 锁定

5、屏幕UV 代码示例:

Shader "AP01/L17/ScreenUV" {Properties {_MainTex ("RGB:颜色 A:透贴", 2d) = "gray"{}_Opacity ("透明度", range(0, 1)) = 0.5_ScreenTex ("屏幕纹理", 2d) = "black" {}}SubShader {Tags {"Queue"="Transparent"               // 调整渲染顺序"RenderType"="Transparent"          // 对应改为Cutout"ForceNoShadowCasting"="True"       // 关闭阴影投射"IgnoreProjector"="True"            // 不响应投射器}Pass {Name "FORWARD"Tags {"LightMode"="ForwardBase"}Blend One OneMinusSrcAlpha          // 混合方式CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"#pragma multi_compile_fwdbase_fullshadows#pragma target 3.0// 输入参数uniform sampler2D _MainTex;uniform half _Opacity;uniform sampler2D _ScreenTex;   uniform float4 _ScreenTex_ST;// 输入结构struct VertexInput {float4 vertex : POSITION;       // 顶点位置 OSfloat2 uv : TEXCOORD0;          // UV信息};// 输出结构struct VertexOutput {float4 pos : SV_POSITION;       // 顶点位置 CSfloat2 uv : TEXCOORD0;          // UV信息float2 screenUV : TEXCOORD1;    // 屏幕UV};// 输入结构>>>顶点Shader>>>输出结构VertexOutput vert (VertexInput v) {VertexOutput o = (VertexOutput)0;o.pos = UnityObjectToClipPos(v.vertex);     // 顶点位置 OS>CSo.uv = v.uv;                                // UV信息float3 posVS = UnityObjectToViewPos(v.vertex).xyz;                  // 顶点位置 OS>VSfloat originDist = UnityObjectToViewPos(float3(0.0, 0.0, 0.0)).z;   // 原点位置 OS>VSo.screenUV = posVS.xy / posVS.z;            // VS空间畸变校正o.screenUV *= originDist;                   // 纹理大小按距离锁定o.screenUV = o.screenUV * _ScreenTex_ST.xy - frac(_Time.x * _ScreenTex_ST.zw);  // 启用屏幕纹理STreturn o;}// 输出结构>>>像素half4 frag(VertexOutput i) : COLOR {half4 var_MainTex = tex2D(_MainTex, i.uv);              // 采样 基本纹理 RGB颜色 A透贴half var_ScreenTex = tex2D(_ScreenTex, i.screenUV).r;   // 采样 屏幕纹理// FinalRGB 不透明度half3 finalRGB = var_MainTex.rgb;half opacity = var_MainTex.a * _Opacity * var_ScreenTex;// 返回值return half4(finalRGB * opacity, opacity);}ENDCG}}
}


二、屏幕扰动:

1、案例展示:

2、实现思路:

屏幕扰动(玻璃效果)

背景信息获取:

MainTex 红或蓝通道扭曲:

①、面板参数定义:

_MainTex ("RGB:颜色 A:透贴", 2d) = "gray"{}

_Opacity ("不透明度", range(0, 1)) = 0.5

_WarpMidVal ("扰动中间值", range(0, 1)) = 0.5

_WarpInt ("扰动强度", range(0, 5)) = 1

这里的中间值 扭曲度,因为我们用的是主图自带的通道中的信息,RGB中不同通道的像素可能偏亮,可能偏暗,会影响扭曲的强弱, 因为不像 法线的中间值是正常的0.5,偏移扭曲的正常的数值,所以这里声明了一个 用于矫正的 "扰动中间值"(_WarpMidVal)


②、追加GrabPass 获取扭曲背景_BGTex==背景纹理采样坐标(现成黑盒):

产生这张图:

获取背景纹理,他的含义为:渲染主体物前,将背景存成一张图,名字就叫 _BGTex.

实际上就是,扰动前,把背景图存起来,然后再用屏幕坐标UV把 背景图(_BGTex)贴回去。

GrabPass {

"_BGTex"

}

获取这张图:

uniform sampler2D _BGTex; // 拿到背景纹理

输出结构中 : (VertexOutput)

float4 grabPos : TEXCOORD1; // 背景纹理采样坐标(4维的)

顶点shader输入输出结构中 :

o.grabPos = ComputeGrabScreenPos(o.pos); // 背景纹理采样坐标

像素shader中采样:

half3 var_BGTex = tex2Dproj(_BGTex, i.grabPos).rgb;// 采样背景


③、像素shader下 采样和计算:

获取主贴图 通道信息作为源,来扭曲背景图(grabPos)采样坐标XY;

// 采样 基本纹理 RGB颜色 A透贴

half4 var_MainTex = tex2D(_MainTex, i.uv);

<这里用主图的B蓝通道,减去中间值,减去是什么意思呢,相当于有正有负,在乘强度(_WarpInt) 在乘 透明度(_Opacity),就得到透明的扰动效果>。

// 扰动背景纹理采样UV

i.grabPos.xy+=(var_MainTex.b - _WarpMidVal) * _WarpInt * _Opacity;

// 采样背景

half3 var_BGTex = tex2Dproj(_BGTex, i.grabPos).rgb;

_Opacity控制 1 到 主图透明 的插值,并乘以 透明的背景信息,得到 带透贴的扰动主图。

// FinalRGB 不透明度

half3 finalRGB = lerp(1.0, var_MainTex.rgb, _Opacity) * var_BGTex;

half opacity = var_MainTex.a;

// 返回值

return half4(finalRGB * opacity, opacity);

3、代码实现:

4、核心代码

5、屏幕扰动 代码示例:

Shader "AP01/L17/ScreenWarp" {Properties {_MainTex    ("RGB:颜色 A:透贴", 2d) = "gray"{}_Opacity    ("不透明度", range(0, 1)) = 0.5_WarpMidVal ("扰动中间值", range(0, 1)) = 0.5_WarpInt    ("扰动强度", range(0, 5)) = 1}SubShader {Tags {"Queue"="Transparent"               // 调整渲染顺序"RenderType"="Transparent"          // 对应改为Cutout"ForceNoShadowCasting"="True"       // 关闭阴影投射"IgnoreProjector"="True"            // 不响应投射器}// 获取背景纹理GrabPass {"_BGTex"}// Forward PassPass {Name "FORWARD"Tags {"LightMode"="ForwardBase"}Blend One OneMinusSrcAlpha          // 混合方式CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"#pragma multi_compile_fwdbase_fullshadows#pragma target 3.0// 输入参数uniform sampler2D _MainTex;uniform half _Opacity;uniform half _WarpMidVal;uniform half _WarpInt;uniform sampler2D _BGTex;   // 拿到背景纹理// 输入结构struct VertexInput {float4 vertex : POSITION;       // 顶点位置 总是必要float2 uv : TEXCOORD0;          // UV信息 采样贴图用};// 输出结构struct VertexOutput {float4 pos : SV_POSITION;       // 顶点位置 总是必要float2 uv : TEXCOORD0;          // UV信息 采样贴图用float4 grabPos : TEXCOORD1;     // 背景纹理采样坐标};// 输入结构>>>顶点Shader>>>输出结构VertexOutput vert (VertexInput v) {VertexOutput o = (VertexOutput)0;o.pos = UnityObjectToClipPos( v.vertex);    // 顶点位置 OS>CSo.uv = v.uv;                                // UV信息o.grabPos = ComputeGrabScreenPos(o.pos);    // 背景纹理采样坐标return o;}// 输出结构>>>像素half4 frag(VertexOutput i) : COLOR {// 采样 基本纹理 RGB颜色 A透贴half4 var_MainTex = tex2D(_MainTex, i.uv);// 扰动背景纹理采样UVi.grabPos.xy += (var_MainTex.b - _WarpMidVal) * _WarpInt * _Opacity;// 采样背景half3 var_BGTex = tex2Dproj(_BGTex, i.grabPos).rgb;// FinalRGB 不透明度half3 finalRGB = lerp(1.0, var_MainTex.rgb, _Opacity) * var_BGTex;half opacity = var_MainTex.a;// 返回值return half4(finalRGB * opacity, opacity);}ENDCG}}
}

三、任务委托:

1、作业:

相关文章:

庄懂的TA笔记(十七)<特效:屏幕UV + 屏幕扰动>

庄懂的TA笔记&#xff08;十七&#xff09;&#xff1c;特效&#xff1a;屏幕UV 屏幕扰动&#xff1e; 大纲&#xff1a; 目录 庄懂的TA笔记&#xff08;十七&#xff09;&#xff1c;特效&#xff1a;屏幕UV 屏幕扰动&#xff1e; 大纲&#xff1a; 正文&#xff1a; 一…...

手写简易RPC框架

目录 简介 服务提供者 服务注册&#xff1a;注册中心 HttpServerHandler处理远程调用请求 consumer服务消费端 简介 RPC&#xff08;Remote Procedure Call&#xff09;——远程过程调用&#xff0c;它是一种通过网络从远程计算机程序上请求服务&#xff0c; 而不需要了解…...

基于孪生网络的目标跟踪

一、目标跟踪 目标跟踪是计算机视觉领域研究的一个热点问题&#xff0c;其利用视频或图像序列的上下文信息&#xff0c;对目标的外观和运动信息进行建模&#xff0c;从而对目标运动状态进行预测并标定目标的位置。具体而言&#xff0c;视觉目标&#xff08;单目标&#xff09;…...

苏州狮山广场能耗管理系统

摘要&#xff1a;随着社会生活水平的提高&#xff0c;经济的繁荣发展&#xff0c;人们对能源的需求逐渐增长&#xff0c;由此带来的能源危机日益严重。商场如何实时的了解、分析和控制商场的能源消耗已成为需要解决的迫在眉睫的难题。传统的能源消耗智能以月/季度/年为周期进行…...

Jupyter Notebook 10个提升体验的高级技巧

Jupyter 笔记本是数据科学家和分析师用于交互式计算、数据可视化和协作的工具。Jupyter 笔记本的基本功能大家都已经很熟悉了&#xff0c;但还有一些鲜为人知的技巧可以大大提高生产力和效率。在这篇文章中&#xff0c;我将介绍10个可以提升体验的高级技巧。 改变注释的颜色 颜…...

CF 751 --B. Divine Array

Black is gifted with a Divine array a consisting of n (1≤n≤2000) integers. Each position in a has an initial value. After shouting a curse over the array, it becomes angry and starts an unstoppable transformation. The transformation consists of infinite…...

Springcloud1--->Eureka注册中心

目录 Eureka原理Eureka入门案例编写EurekaServer将user-service注册到Eureka消费者从Eureka获取服务 Eureka详解基础架构高可用的Eureka Server失效剔除和自我保护 Eureka原理 Eureka&#xff1a;就是服务注册中心&#xff08;可以是一个集群&#xff09;&#xff0c;对外暴露自…...

面试阿里、字节全都一面挂,被面试官说我的水平还不如应届生

测试员可以先在大厂镀金&#xff0c;以后去中小厂毫无压力&#xff0c;基本不会被卡&#xff0c;事实果真如此吗&#xff1f;但是在我身上却是给了我很大一巴掌... 所谓大厂镀金只是不卡简历而已&#xff0c;如果面试答得稀烂&#xff0c;人家根本不会要你。况且要不是大厂出来…...

JAVA开发(记一次删除完全相同pgSQL数据库记录只保留一条)

进行数据管理时&#xff0c;无效数据可能会对生产力和决策质量造成严重的影响。如何发现和处理无效数据变得愈发重要。一起来唠唠你会如何处理无效数据吧~ 方向一&#xff1a;介绍无效数据的概念 最近遇到了pg数据库表中的大量数据重复了&#xff0c;需要删除其中的一条。一条…...

音视频八股文(7)-- 音频aac adts三层结构

AAC介绍 AAC&#xff08;Advanced Audio Coding&#xff09;是一种现代的音频编码技术&#xff0c;用于数字音频的传输和存储领域。AAC是MPEG-2和MPEG-4标准中的一部分&#xff0c;可提供更高质量的音频数据&#xff0c;并且相比于MP3等旧有音频格式&#xff0c;AAC需要更少的…...

Docker代码环境打包进阶 - DockerHub分享镜像

1. Docker Hub介绍 Docker Hub是一个广泛使用的容器镜像注册中心&#xff0c;为开发人员提供了方便的平台来存储、共享和分发Docker容器镜像。它支持版本控制、访问控制和自动化构建&#xff0c;并提供了丰富的公共镜像库&#xff0c;方便开发人员快速获取和使用各种开源应用和…...

SQL进阶-having子句的力量

SQL进阶-having子句的力量 having子句是理解SQL面向集合这一本质的关键。 在以前的SQL标准里面&#xff0c;having子句必须和group by子句一起使用&#xff0c;但是按照现在的SQL标准&#xff0c;having子句是可以单独使用的 可以与case 表达式或者自连接等结合使用。表不是文件…...

Electron 如何创建模态窗口?

目录 前言一、模态窗口1.Web页面模态框2.Electron中的模态窗口3.区分父子窗口与模态窗口 二、实际案例使用总结 前言 模态框是一种常用的交互元素&#xff0c;无论是在 Web 网站、桌面应用还是移动 APP 中&#xff0c;都有其应用场景。模态框指的是一种弹出窗口&#xff0c;它…...

诺贝尔化学奖:酶分子“定向进化”

2018年&#xff0c;诺贝尔化学奖迎来了历史上第五位女性得主——加州理工学院的Frances H. Arnold教授&#xff0c;以表彰她在“酶的定向进化”这一领域的贡献。 1、“酶的定向进化”到底是什么&#xff1f; 这里有三个点&#xff0c;“酶”、“进化”还有“定向”&#xff1a…...

Centos8下源码编译安装运行Primihub

参考文献 PrimiHub 本地编译启动How to install Bazel on CentOS 8 Linux or Redhat 8/7 编译启动步骤 由于历史原因&#xff0c;服务器是Centos8操作系统&#xff0c;所以源码编译异常的麻烦。特此记录如下。 采用源码编译方式可以在一步步的运行过程中对整个流程进行深刻…...

嘉兴桐乡考证培训-23年教资认定注意事项你知道吗?

又到了新的一年了&#xff0c;去年错过认定的同学们可以竖起耳朵啦~ 每年认定机会有两次&#xff0c;大部分省份一般上半年下半年各一次。 问&#xff1a;在校生可以认定么&#xff1f; 答&#xff1a;可以&#xff0c;但有年级限制&#xff1a;本科生大四最后一学期&#xf…...

oracle客户端的安装教程

文章目录 一、安装前的准备工作 1.1、百度网盘安装包的连接 1.2、百度网盘oracle11g软件包 二、oracle数据库客户端的安装与数据的准备 安装步骤 前言 本文主要讲解oracle客户端的安装与简单使用过程 一、安装前的准备工作 1.1、百度网盘安装包的连接 客户端的软件包 …...

python 文件操作 , 异常处理 , 模块和包

文件操作 1.写数据 # open(name, mode) # name&#xff1a;是要打开的目标文件名的字符串(可以包含文件所在的具体路径)。 # mode&#xff1a;设置打开文件的模式(访问模式)&#xff1a;只读、写入、追加等。 #1.打开文件---通道建立--申请资源 # w 模式会清空之前的内…...

AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(1-简介)

文章大纲 AI GC简介决策式/分析式AI(Discriminant/Analytical AI)和生成式AI (Generative AI)参考文献与学习路径模型进化券商研报陆奇演讲AI GC 《我,机器人》中所演绎的一样,主角曾与机器人展开了激烈的辩论,面对“机器人能写出交响乐吗?”“机器人能把画布变成美丽…...

Flask restful分页接口实现

1.先定义一个工作信息表: 指定一些相关的字段:工作名称、年限、级别等 class Work(db.Model):__tablename__ = workid = db.Column(db.Integer, primary_key=True)workName = db.Column(db.String(5),nullable=False)year = db.Column(db.String(20), nullable=False)level = …...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...