掌握RDD算子2
文章目录
- 扁平映射算子案例
- 任务1、统计不规则二维列表元素个数
- 方法一、利用Scala来实现
- 方法二、利用Spark RDD来实现
- 按键归约算子案例
- 任务1、在Spark Shell里计算学生总分
- 任务2、在IDEA里计算学生总分
- 第一种方式:读取二元组成绩列表
- 第二种方式:读取四元组成绩列表
- 第三种情况:读取HDFS上的成绩文件
扁平映射算子案例
任务1、统计不规则二维列表元素个数
方法一、利用Scala来实现
- 在net.xxr.rdd.day01包里创建Example02单例对象
package net.xxr.rdd.day01import org.apache.spark.{SparkConf, SparkContext}/*** 功能:利用Scala统计不规则二维列表元素个数*/
object Example02 {def main(args: Array[String]): Unit = {// 创建不规则二维列表val mat = List(List(7, 8, 1, 5),List(10, 4, 9),List(7, 2, 8, 1, 4),List(21, 4, 7, -4))// 输出二维列表println(mat)// 将二维列表扁平化为一维列表val arr = mat.flatten// 输出一维列表println(arr)// 输出元素个数println("元素个数:" + arr.size)}
}

方法二、利用Spark RDD来实现
- 在net.xxr.rdd.day01包里创建Example03单例对象
package net.xxr.rdd.day01import org.apache.spark.{SparkConf, SparkContext}/*** 功能:利用RDD统计不规则二维列表元素个数*/
object Example03 {def main(args: Array[String]): Unit = {// 创建Spark配置对象val conf = new SparkConf().setAppName("PrintDiamond") // 设置应用名称.setMaster("local[*]") // 设置主节点位置(本地调试)// 基于Spark配置对象创建Spark容器val sc = new SparkContext(conf)// 创建不规则二维列表val mat = List(List(7, 8, 1, 5),List(10, 4, 9),List(7, 2, 8, 1, 4),List(21, 4, 7, -4))// 基于二维列表创建rdd1val rdd1 = sc.makeRDD(mat)// 输出rdd1rdd1.collect.foreach(x => print(x + " "))println()// 进行扁平化映射val rdd2 = rdd1.flatMap(x => x.toString.substring(5, x.toString.length - 1).split(", "))// 输出rdd2rdd2.collect.foreach(x => print(x + " "))println()// 输出元素个数println("元素个数:" + rdd2.count)}
}

- 扁平化映射可以简化


按键归约算子案例
任务1、在Spark Shell里计算学生总分
- 创建成绩列表scores,基于成绩列表创建rdd1,对rdd1按键归约得到rdd2,然后查看rdd2内容
val scores = List((“张钦林”, 78), (“张钦林”, 90), (“张钦林”, 76),
(“陈燕文”, 95), (“陈燕文”, 88), (“陈燕文”, 98),
(“卢志刚”, 78), (“卢志刚”, 80), (“卢志刚”, 60))
val rdd1 = sc.makeRDD(scores)
val rdd2 = rdd1.reduceByKey((agg, cur) => agg + cur)
rdd2.collect.foreach(println)

- 可以采用神奇的占位符

任务2、在IDEA里计算学生总分
第一种方式:读取二元组成绩列表
- 在net.xxr.rdd.day02包里创建CalculateScoreSum01单例对象
package net.xxr.rdd.day02import org.apache.spark.{SparkConf, SparkContext}/*** 功能:计算总分*/
object CalculateScoreSum01 {def main(args: Array[String]): Unit = {// 创建Spark配置对象val conf = new SparkConf().setAppName("PrintDiamond") // 设置应用名称.setMaster("local[*]") // 设置主节点位置(本地调试)// 基于Spark配置对象创建Spark容器val sc = new SparkContext(conf)val scores = List(("张钦林", 78), ("张钦林", 90), ("张钦林", 76),("陈燕文", 95), ("陈燕文", 88), ("陈燕文", 98),("卢志刚", 78), ("卢志刚", 80), ("卢志刚", 60))// 基于二元组成绩列表创建RDDval rdd1 = sc.makeRDD(scores)// 对成绩RDD进行按键归约处理val rdd2 = rdd1.reduceByKey(_ + _)// 输出归约处理结果rdd2.collect.foreach(println)}
}

第二种方式:读取四元组成绩列表
- 在net.xxr.rdd.day02包里创建CalculateScoreSum02单例对象
package net.xxr.rdd.day02import org.apache.spark.{SparkConf, SparkContext}import scala.collection.mutable.ListBuffer/*** 功能:计算总分*/
object CalculateScoreSum02 {def main(args: Array[String]): Unit = {// 创建Spark配置对象val conf = new SparkConf().setAppName("PrintDiamond") // 设置应用名称.setMaster("local[*]") // 设置主节点位置(本地调试)// 基于Spark配置对象创建Spark容器val sc = new SparkContext(conf)// 创建四元组成绩列表val scores = List(("张钦林", 78, 90, 76),("陈燕文", 95, 88, 98),("卢志刚", 78, 80, 60))// 将四元组成绩列表转化成二元组成绩列表val newScores = new ListBuffer[(String, Int)]()// 通过遍历算子遍历四元组成绩列表scores.foreach(score => {newScores.append(Tuple2(score._1, score._2))newScores.append(Tuple2(score._1, score._3))newScores.append(Tuple2(score._1, score._4))})// 基于二元组成绩列表创建RDDval rdd1 = sc.makeRDD(newScores)// 对成绩RDD进行按键归约处理val rdd2 = rdd1.reduceByKey(_ + _)// 输出归约处理结果rdd2.collect.foreach(println)}
}

第三种情况:读取HDFS上的成绩文件
- 将成绩文件上传到HDFS的/input目录
hdfs dfs -mkdir /input
hdfs dfs -put scores.txt /input
hdfs dfs -cat /input/scores.txt

- 在net.xxr.rdd.day02包里创建CalculateScoreSum03单例对象
package net.xxr.rdd.day02import org.apache.spark.{SparkConf, SparkContext}import scala.collection.mutable.ListBuffer/*** 功能:计算总分*/
object CalculateScoreSum03 {def main(args: Array[String]): Unit = {// 创建Spark配置对象val conf = new SparkConf().setAppName("CalculateScoreSum").setMaster("local[*]")// 基于配置创建Spark上下文val sc = new SparkContext(conf)// 读取成绩文件,生成RDDval lines = sc.textFile("hdfs://master:9000/input/scores.txt")// 定义二元组成绩列表val scores = new ListBuffer[(String, Int)]()// 遍历lines,填充二元组成绩列表lines.collect.foreach(line => {val fields = line.split(" ")scores += Tuple2(fields(0), fields(1).toInt)scores += Tuple2(fields(0), fields(2).toInt)scores += Tuple2(fields(0), fields(3).toInt)})// 基于二元组成绩列表创建RDDval rdd1 = sc.makeRDD(scores)// 对成绩RDD进行按键归约处理val rdd2 = rdd1.reduceByKey((x, y) => x + y)// 输出归约处理结果rdd2.collect.foreach(println)}
}

- 在Spark Shell里完成同样的任务
import scala.collection.mutable.ListBuffer
val lines = sc.textFile("hdfs://master:9000/input/scores.txt")
val scores = new ListBuffer[(String, Int)]()
lines.collect.foreach(line => {
val fields = line.split(" ")
scores.append(Tuple2(fields(0), fields(1).toInt))
scores.append(Tuple2(fields(0), fields(2).toInt))
scores.append(Tuple2(fields(0), fields(3).toInt))
})
val rdd1 = sc.makeRDD(scores)
val rdd2 = rdd1.reduceByKey(_ + _)
rdd2.collect.foreach(println)

- 修改程序,将计算结果写入HDFS文件


相关文章:
掌握RDD算子2
文章目录 扁平映射算子案例任务1、统计不规则二维列表元素个数方法一、利用Scala来实现方法二、利用Spark RDD来实现 按键归约算子案例任务1、在Spark Shell里计算学生总分任务2、在IDEA里计算学生总分第一种方式:读取二元组成绩列表第二种方式:读取四元…...
ORACLE-SQL性能优化(3)
2. 给优化器更明确的命令 自动选择索引 如果表中有两个以上(包括两个)索引,其中有一个唯一性索引,而其他是非唯一性. 在这种情况下,ORACLE将使用唯一性索引而完全忽略非唯一性索引. 举例: SELEC…...
3年外包裸辞,面试阿里、字节全都一面挂,哭死.....
测试员可以先在外包积累经验,以后去大厂就很容易,基本不会被卡,事实果真如此吗?但是在我身上却是给了我很大一巴掌... 所谓今年今天履历只是不卡简历而已,如果面试答得稀烂,人家根本不会要你。况且要不是大…...
JavaEE(系列16) -- 多线程(信号量与CountDownLatch)
目录 1. 信号量Semaphore 2. CountDownLatch 1. 信号量Semaphore 信号量, 用来表示 "可用资源的个数". 本质上就是一个计数器. 1.理解信号量 可以把信号量想象成是停车场的展示牌: 当前有车位 100 个. 表示有 100 个可用资源.当有车开进去的时候, 就相当于申请一个可…...
Tomcat配置https协议证书-阿里云,Nginx配置https协议证书-阿里云,Tomcat配置https证书pfx转jks
Tomcat/Nginx配置https协议证书 前言Tomcat配置https协议证书-阿里云方式一 pfx配置证书重启即可 方式二 jkspfx生成jks配置证书重启即可 Nginx配置https协议证书-阿里云实现方式重启即可 其他Tomcat相关配置例子如下nginx配置相关例子如下 前言 阿里云官网:https:…...
抖音定位基本原理
抖音是一款非常受欢迎的短视频分享应用程序,它允许用户创建和分享15秒到60秒的短视频。抖音的成功在很大程度上归功于其强大的定位技术,该技术可以根据用户的兴趣和位置提供个性化的内容。在本文中,我们将深入探讨抖音的定位技术,…...
【Hbase 05】Hbase表的设计原则与优化方案
这里说一下Hbase在使用过程中的表设计原则与优化方案,如果你是运维或者开发兼顾环境的工作,也许比较受用,话不多说,我们直接开始说优化的内容: 一、表设计原则 1.行键设计 行键在设计的时候要尽量的散列,例如可以考虑使用哈希、加密算法等使结果散列,这样能保证请求不会…...
行业报告 | 2022文化科技十大前沿应用趋势(上)
文 | BFT机器人 前言 Introduction 文化科技是文化科技融合过程中诞生的系列新技术成果,是文化强国和科技强国两大战略的交又领域。2012 年 8月,科技部会同中宣部、财政部、文化部、广电总局、新闻出版总署发布《文化科技创新工程纲要》,开启…...
实现BIM的Revit软件学习资料
实现BIM的Revit软件学习资料 一、BIM与Revit的关系二、Revit使用方法总结(一)快捷键(二)一些技巧 一、BIM与Revit的关系 链接: BIM与Revit是什么关系?看完秒懂系列! REVIT是实现BIM理念的工具之一。 二、Revit使用方…...
09 集合框架2
集合元素的迭代方式有哪些? for循环,for-each循环(底层迭代器),迭代器 Iterator<String> it list.iterator(); while(it.hasNext()) {String ele it.next();System.out.println(ele); }并发修改集合元素异常是怎么造成的?怎么解决? 在迭代过程中使用List里面的增…...
相见恨晚的5款良心软件,每款都是经过时间检验的精品
今天来给大家推荐5款良心软件,每款都是经过时间检验的精品,用起来让你的工作效率提升飞快,各个都让你觉得相见恨晚! 1.颜色选择器——ColorPicker ColorPicker是一款用于在屏幕上选择颜色的工具。它可以让你快速地获取任意像素的颜色值,并复制到剪贴板…...
AI与税务管理:新技术带来的新机遇和新挑战
本文作者:王伊琳 人工智能(Artificial Intelligence,AI)是指由计算机系统或机器人模拟人类智能的过程和结果,包括感知、理解、学习、推理、决策等能力。近年来,随着计算机技术、互联网平台、大数据分析等的…...
springboot 集成 Swagger3(速通)
→ springboot 集成 Swagger2 ← 目录 1. 案例2. info 配置3. Docket 配置1. 开关配置2. 扫描路径3. 路径匹配4. 分组管理 4. 常用注解1. 说明2. 案例 1. 案例 这次直接使用 2.5.6 的 spring-boot 。 依赖: <parent><groupId>org.springframework.…...
2023年NOC大赛创客智慧编程赛项图形化复赛模拟题二,包含答案解析
2023年NOC大赛创客智慧编程赛项图形化复赛模拟题二,包含答案解析 第一题: 在源程序“小蝙蝠”文件中,实现小蝙蝠遇到不同的角色会说不同的话,以及切换不同的造型要求: 1:游戏开始时,小蝙蝠角色是造型 a,并能够用键盘控制上、下、左、右移动; 2:移动小蝙蝠,距离角色雪…...
2023年NOC大赛创客智慧编程赛项Python 复赛模拟题(二)
题目来自:NOC 大赛创客智慧编程赛项Python 复赛模拟题(二) NOC大赛创客智慧编程赛项Python 复赛模拟题(二) 第一题: 编写一个成绩评价系统,当输入语文、数学和英语三门课程成绩时,输出三门课程总成绩及其等级。 (1)程序提示用户输入三个数字,数字分别表示语文、数学、…...
【SQL】MySQL的查询语句
文章目录 SELECT语句WHERE子句JOIN语句GROUP BY和HAVINGORDER BYLIMIT其他关键字 MySQL是一种广泛使用的关系型数据库管理系统,它被广泛地应用于各种应用程序和网站。学会使用MySQL的查询语句可以帮助我们更好地管理和分析数据,从而更好地利用数据库中的…...
测试的分类
1 按照开发阶段(软件开发周期) 单元测试是对软件的组成单元进行测试。其目的是检验软件基本组成单位的正确性。测试的对象是软件设计的最小单位——模块,故又称为模块测试。集成测试是将程序模块采用适当的集成策略组装起来,对系…...
【5.21】六、自动化测试—持续集成测试
目录 6.4 持续集成测试 6.4.1 持续集成的概念 6.4.2 持续集成测试框架设计 6.4 持续集成测试 持续集成(Continuous Integration,CI)是软件开发DevOps(DevelopmentOperations)中的一个概念,它强调的是软…...
【C++】 排列与组合算法详解(进阶篇)
文章目录 写在前面算法1:朴素算法思路缺点 算法2:递推预处理思路时间复杂度: O ( n 2 ) O(n^2) O(n2) 算法3:阶乘逆元思路时间复杂度: O ( n log n ) O(n \log n) O(nlogn)思考:读者也可以尝试写 O ( n…...
Godot引擎 4.0 文档 - 循序渐进教程 - 监听玩家输入
本文为Google Translate英译中结果,DrGraph在此基础上加了一些校正。英文原版页面: Listening to player input — Godot Engine (stable) documentation in English 监听玩家输入 在上一课创建您的第一个脚本的基础上,让我们看看任何游戏…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
