使用Windows API实现本地音频采集
Windows API提供了Winmm(Windows多媒体)库,其中包括了音频设备相关的函数,可以用来实现音频设备的枚举和测试。
下面是一个简单的示例代码,演示了如何使用Winmm库中的waveInGetNumDevs()函数来枚举计算机上的音频输入设备数量,并使用waveInOpen()函数打开其中一个设备并进行测试录音。
#include <iostream>
#include <Windows.h>
#include <mmsystem.h>#pragma comment(lib, "winmm.lib")void CALLBACK waveInProc(HWAVEIN hwi, UINT uMsg, DWORD_PTR dwInstance, DWORD_PTR dwParam1, DWORD_PTR dwParam2)
{// 实现录音回调函数
}int main() {UINT numDevs = waveInGetNumDevs();std::cout << "Number of audio input devices: " << numDevs << std::endl;WAVEFORMATEX format;format.wFormatTag = WAVE_FORMAT_PCM;format.nChannels = 1;format.nSamplesPerSec = 44100;format.wBitsPerSample = 16;format.nBlockAlign = format.nChannels * format.wBitsPerSample / 8;format.nAvgBytesPerSec = format.nSamplesPerSec * format.nBlockAlign;HWAVEIN hWaveIn;MMRESULT result = waveInOpen(&hWaveIn, WAVE_MAPPER, &format, (DWORD_PTR)waveInProc, NULL, CALLBACK_FUNCTION);if (result == MMSYSERR_NOERROR) {std::cout << "Audio input device opened successfully" << std::endl;// 开始录音result = waveInStart(hWaveIn);if (result == MMSYSERR_NOERROR) {std::cout << "Recording started" << std::endl;}else {std::cerr << "Failed to start recording" << std::endl;waveInClose(hWaveIn);return 1;}// 停止录音system("pause");waveInStop(hWaveIn);waveInReset(hWaveIn);waveInClose(hWaveIn);std::cout << "Recording stopped" << std::endl;}else {std::cerr << "Failed to open audio input device" << std::endl;return 1;}return 0;
}
在这个例子中,waveInGetNumDevs()函数返回了计算机上可用的音频输入设备数量。waveInOpen()函数用于打开音频设备,其中参数WAVE_MAPPER表示使用默认设备,&format指向一个WAVEFORMATEX结构体,描述了所需的音频格式,waveInProc是一个回调函数,用于处理录音数据。然后,waveInStart()函数开始录音,system("pause")函数用于暂停程序,以等待用户手动停止录音。最后,waveInStop()函数停止录音,waveInReset()函数清除录音缓冲区,waveInClose()函数关闭音频设备。
waveInProc是一个回调函数,用于处理录音数据,这个回调函数有五个参数,它们的含义如下:
HWAVEIN hwi:表示音频设备的句柄,即与音频设备建立的连接。UINT uMsg:表示回调函数的消息类型,可以是以下值之一:WIM_OPEN:当音频设备已经打开并准备好录音时,发送此消息。WIM_DATA:当音频设备已经采集到音频数据时,发送此消息。WIM_CLOSE:当音频设备已经关闭时,发送此消息。
DWORD_PTR dwInstance:一个应用程序定义的32位数值,它在打开音频设备时指定,用于传递应用程序特定的信息。DWORD_PTR dwParam1:当uMsg为WIM_OPEN或WIM_CLOSE时,此参数为0。当uMsg为WIM_DATA时,此参数是一个指向WAVEHDR结构体的指针,表示音频数据的头信息。DWORD_PTR dwParam2:当uMsg为WIM_OPEN或WIM_CLOSE时,此参数为0。当uMsg为WIM_DATA时,此参数为一个DWORD值,表示已经采集到的音频数据的字节数。
需要注意的是,waveInProc函数是在一个独立的线程中执行的,因此要注意线程安全。
相关文章:
使用Windows API实现本地音频采集
Windows API提供了Winmm(Windows多媒体)库,其中包括了音频设备相关的函数,可以用来实现音频设备的枚举和测试。 下面是一个简单的示例代码,演示了如何使用Winmm库中的waveInGetNumDevs()函数来枚举计算机上的音频输入…...
实用的费曼学习法 | 一些思考
文章目录 一、前言二、费曼学习法CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 大数据与人工智能背景下,最重要的是:捕捉机会和快速学习的能力 一、前言 费曼学习法是美国著名的物理学家,理查德 ∙ \bullet ∙ 费曼总结出来的学习方法。 这个方法的核心是:当你学习了…...
Linux安装Docker配置docker-compose 编排工具【超详细】
一、介绍Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有…...
iTerm2 + Oh My Zsh 打造舒适终端体验
最终效果图: 因为powerline以及homebrew均需要安装command line tool,网络条件优越的同学在执行本文下面内容之前,可以先安装XCode并打开运行一次(会初始化安装components),省去以后在iterm2中的等待时间。…...
【scipy.sparse】diags()和dia_matrix()的区别
【scipy.sparse】diags()和dia_matrix()的区别 文章目录【scipy.sparse】diags()和dia_matrix()的区别1. 介绍2. 代码示例2.1 sp.diags()2.1.1 第一种用法(dataoffsets)2.1.2 广播(需要指定shape)2.1.3 只有一条对角线2.2 sp.dia_…...
java ssm自行车在线租赁系统idea
当前自行车在社会上广泛使用,但自行车的短距离仍旧不能完全满足广大用户的需求。自行车在线租赁系统可以为用户提供租赁用车等功能,拥有较好的用户体验.能实时在线租赁提供更加快捷方便的租车方式,解决了常见自行车在线租赁系统较为局限的自行车归还功能。 通过使用本系统&…...
GAN和CycleGAN
文章目录1. GAN 《Generative Adversarial Nets》1.1 相关概念1.2 公式理解1.3 图片理解1.4 熵、交叉熵、KL散度、JS散度1.5 其他相关(正在补充!)2. Cycle GAN 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Ne…...
源码项目中常见设计模式及实现
原文https://mp.weixin.qq.com/s/K8yesHkTCerRhS0HfB0LeA 单例模式 单例模式是指一个类在一个进程中只有一个实例对象(但也不一定,比如Spring中的Bean的单例是指在一个容器中是单例的) 单例模式创建分为饿汉式和懒汉式,总共大概…...
KDNM5000-10A-2剩余电流保护器测试仪
一、产品概述 KDNM5000-10A-2型剩余电流保护器测试仪(以下简称测试仪),是本公司改进产品,是符合国家标准《剩余电流动作保护器》(GB6829—95)中第8.3条和GB16917.1—1997中第9.9条验证AC型交流脱扣器动作特性要求的专用测试仪器。…...
C++实现线程池
C实现线程池一、前言二、线程池的接口设计2.1、类封装2.2、线程池的初始化2.3、线程池的启动2.4、线程池的停止2.5、线程的执行函数run()2.6、任务的运行函数2.7、等待所有线程结束三、测试线程池四、源码地址总结一、前言 C实现的线程池,可能涉及以下知识点&#…...
2023最新Java面试手册(性能优化+微服务架构+并发编程+开源框架)
Java面试手册 一、性能优化面试专栏 1.1、 tomcat性能优化整理 1.2、JVM性能优化整理 1.3、Mysql性能优化整理 二、微服务架构面试专栏 2.1、SpringCloud面试整理 2.2、SpringBoot面试整理 2.3、Dubbo面试整理 三、并发编程高级面试专栏 四、开源框架面试题专栏 4.1、Sprin…...
对灵敏度分析技术进行建模(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
完整爬虫学习笔记(第一章)
文章目录前言:fu:. 爬虫概述:hotdog:原理解剖:one: 服务器渲染:two: 前端JS渲染:fire: 第一个爬虫程序案例总结前言 最近正在学习Python网络爬虫的相关知识,鉴于本人Python水平有限 , 对Python并无太深的理解,所以此文章的主要目的在于抛砖引玉…...
会计师项目管理软件是什么,哪些必不可少的功能
欢迎阅读现代金融专业人士的会计师项目管理指南。在本文中,我们将深入探讨在基于项目的会计的各个方面使用项目管理方法的好处。我们还将教您面临哪些挑战以及如何为您的团队选择最佳工具。 为什么会计师的项目管理很重要? 在会计方面,目标始…...
第 8 章 优化
目录 8.1 优化概述 8.2 优化 SQL 语句 8.3 优化和指标 8.4 优化数据库结构 8.5 优化 InnoDB 表 8.6 优化 MyISAM 表 8.7 内存表的优化 8.8 了解查询执行计划 8.9 控制查询优化器 8.10 缓冲和缓存 8.11 优化锁定操作 8.12 优化 MySQL 服务器 8.13 衡量性能ÿ…...
剑指offer -- java题解
剑指offer -- java题解刷题地址1、数字在升序数组中出现的次数2、二叉搜索树的第k个节点3、二叉树的深度4、数组中只出现一次的两个数字5、和为S的两个数字6、左旋转字符串7、滑动窗口的最大值8、扑克牌顺子9、孩子们的游戏(圆圈中最后剩下的数)10、买卖股票的最好时机(一)刷题…...
若依ruoyi——手把手教你制作自己的管理系统【二、修改样式】
阿里图标一( ̄︶ ̄*)) 图片白嫖一((* ̄3 ̄)╭ ********* 专栏略长 爆肝万字 细节狂魔 请准备好一键三连 ********* 运行成功后: idea后台正常先挂着 我习惯用VScode操作 当然如果有两台机子 一个挂后台一个改前端就更好…...
2023.2.14每日一题——455. 分发饼干
每日一题题目描述解题核心解法一:双指针题目描述 题目链接:455. 分发饼干 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],…...
MySQL入门篇-MySQL常用字符函数小结
备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊常见的字符函数 函数名函数用途UPPER()返回大写的字符LOWER()返回小写的字符LTRIM()左边去掉空格TRIM()去掉空格RTRIM()右边去掉空格SPACE()返回指定长度的空格CONCAT()连接字符串CONCAT_WS()指定分隔符连接字符串CHAR_LEN…...
解决不同影像裁剪后栅格数据行列不一致问题
前言在处理栅格数据时,尽管用同一个矢量文件裁剪栅格数据,不同数据来源的栅格行列数也会出现不一致的情况。如果忽略或解决不好,会导致后续数据处理出现意想不到的误差或错误,尤其是利用编程实现数据处理时。因此,应当…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
