深度解析UG二次开发装配的部件事件、部件原型和部件实例
做UG二次开发快一年了,每次遇到装配的问题涉及到部件事件、部件原型和部件实例还是一头雾水,什么是实例,什么是原型这些专业术语等等。
针对这个问题,今天专门写了一篇特辑,结合装配实例深度剖析装配过程中的的所有参数。
先来看看装配相关的基本概念:
UG装配是以树型结构组织装配中的部件,一个部件文件中只能有一棵装配树,即只能存在一个装配根节点。装配中的节点由部件原型、部件事件与部件实例3种对象进行描述。
- 部件事件(partoccurrence)是装配环境下对实际存在的部件模型(即部件原型)的一种引用,部件事件也可以理解为指向部件原型的指针。如果需要一次或多次装配一个部件,并不复制该部件的原型,而是建立该部件原型所对应的事件。在装配中,不同的部件事件表征不同的装配节点,因此UG赋予它唯一的标识。
- 部件原型(partPrototype)是真实存在的部件模型,它记录了模型所需的所有数据。当一个部件文件被多次装入时,将产生不同的部件事件,但这些事件都指向相同的部件原型。可以看出,部件原型与部件事件之间形成一对多的映射关系。部件事件随原型的改变而改变,但修改部件事件不会影响它的原型。
- 部件实例(partInstance)记录子节点与其父节点之间的关联关系,从而形成各节点间的层次结构。在装配体重,部件与其子部件之间的装配关系是利用部件实例来描述的。部件实例是指一次或多次装入装配体的部件对象,它描述装配环境下实例之间的层次关系,并表征唯一的上下级部件间的装配关系。部件实例也可以理解为一种指针,由下级部件事件指向上一级部件事件。可以看出,部件实例与部件事件之间形成一对多的映射关系,即不同的装配节点可能具有相同的装配关系。
一、实例截图及免费下载地址
从截图可以看到,本实例创建了一个简单的装配,为了方便区分各节点特意用了:2个球、1个圆柱、一个圆锥和一个长方体来进行案例分析。
实例免费下载地址入口:https://download.csdn.net/download/MarcoPro/87452892
二、 部件事件、部件原型和部件实例分析
光看上面的概念,很难理解部件事件、部件原型和部件实例到底是什么,更不要提怎么用了,那么我们先把所有节点的数据拿出来看一下:
上图的数字都是相关属性的Tag值,从上之下三层代表了装配的层级关系,其中根节点下有:2个球和2个长方体,长方体下面有两个子节点:圆柱和圆锥。下面我会逐个分析所有节点:
1、根节点_asm1
根节点比较特殊,因为他没有原型,实际上是一个虚拟的节点,参数获取方法如下:
workpart = theUFSession.Assem.AskWorkPart(); //获得当前workpart的部件 tag
workocc = theUFSession.Assem.AskWorkOccurrence(); //获得当前workpart的occurrence tag
2、二级节点COMPONENT ball 1、COMPONENT ball 2和COMPONENT block 1
1)为什么这里要做2个球体,就是为了看看来自同一个零件原型的节点,他的部件原型是否相同。
从数据不难发现,他们有相同的部件原型tag:32161,有不同的部件事件33595和33597,不同的部件实例33581和33580,然后他们的父部件和父部件事件是相同的。
2)反观同样在二级目录的球和长方体的数据,他们的部件事件、部件原型和部件实例都是不一样的,父部件和父部件事件是相同的。
3、三级节点COMPONENT Cylinder 1和COMPONENT Cone 1
从长方体和圆柱体、圆锥的数据不难发现,部件事件、部件原型和部件实例以及父节点和子节点的关系已经很明朗了。
三、 部件事件、部件原型和部件实例数据的获取方法
那么,上面的数据是怎么获取的呢?下面直接上源码:
1、调用主方法
theSession = Session.GetSession();
displayPart = theSession.Parts.Display;
List<Component> allComponents = new List<Component>();
List<ComponentModel> componentList = new List<ComponentModel>();
Component root = displayPart.ComponentAssembly.RootComponent;
if (root != null)
{AssemHelper.GetAllComponents(displayPart.ComponentAssembly.RootComponent, allComponents, componentList);
}theUFSession = UFSession.GetUFSession();
Tag workpart;
Tag workocc;
workpart = theUFSession.Assem.AskWorkPart(); //获得当前workpart的prototype tag
workocc = theUFSession.Assem.AskWorkOccurrence(); //获得当前workpart的occurrence tag
if (workocc == Tag.Null) workocc = theUFSession.Assem.AskRootPartOcc(workpart);int ChildOccNum = 0;
Tag[] childOccs; //子组件的occurrence
ChildOccNum = theUFSession.Assem.AskPartOccChildren(workocc, out childOccs);Tag[] childInstances = new Tag[ChildOccNum]; //子组件的instance
for (int i = 0; i < ChildOccNum; i++)
{Tag childInstance = theUFSession.Assem.AskInstOfPartOcc(childOccs[i]);childInstances[i] = childInstance;
}int ChildOccNum1 = 0;
Tag[] childOccs1;
ChildOccNum1 = theUFSession.Assem.AskPartOccChildren((Tag)int.Parse("33592"), out childOccs1);Tag[] childInstances1 = new Tag[ChildOccNum1]; //子组件的instance
for (int i = 0; i < ChildOccNum1; i++)
{Tag childInstance1 = theUFSession.Assem.AskInstOfPartOcc(childOccs1[i]);childInstances1[i] = childInstance1;
}
2、子方法
/// <summary>
/// 用递归获得所有组件的方法
/// </summary>
/// <param name="fatherComponent">父组件</param>
/// <param name="allComponents">全部的组件集合</param>
public static void GetAllComponents(Component fatherComponent, List<Component> allComponents, List<ComponentModel> componentsList)
{theUFSession = UFSession.GetUFSession();Component[] tempComponent = fatherComponent.GetChildren(); //得到子组件数组foreach (Component x in tempComponent)//没有子组件时foreach的语句不会执行,跳出递归{allComponents.Add(x);string partName, refsetName, instanceName;double[] origin = new double[3]; //组件的位置double[] csys_matrix = new double[9]; //坐标系矩阵double[,] transform = new double[4, 4]; //转换矩阵theUFSession.Assem.AskComponentData(x.Tag, out partName, out refsetName, out instanceName, origin, csys_matrix, transform);ComponentModel model = new ComponentModel();model.origin = new double[3];model.csys_matrix = new double[9];model.transform = new double[4, 4];model.origin = origin;model.csys_matrix = csys_matrix;model.transform = transform;model.partName = partName;model.refsetName = refsetName;model.instanceName = instanceName;model.journalIdentifier = x.JournalIdentifier;componentsList.Add(model);GetAllComponents(x, allComponents, componentsList);}
}
四、小节
通过上面的梳理,我们了解了部件事件、部件原型和部件实例的基本概念以及在装配过程中的具体数据表现形式。
但是说实话,在实际项目中这些概念似乎并不是必须有用的,比如在使用Nxopen进行开发的过程中,我们不需要了解部件原型和部件事件,我们只需要找到component Tag就能去操作零件,其实这里的component Tag就是部件事件。
作为一名合格的程序员,我相信大家都有专研精神,对于黑盒的深入了解才是一步一步走向职业生涯巅峰的正确途径。
相关文章:

深度解析UG二次开发装配的部件事件、部件原型和部件实例
做UG二次开发快一年了,每次遇到装配的问题涉及到部件事件、部件原型和部件实例还是一头雾水,什么是实例,什么是原型这些专业术语等等。 针对这个问题,今天专门写了一篇特辑,结合装配实例深度剖析装配过程中的的所有参数…...

Linux安装elasticsearch-head
elasticsearch-head 是一款专门针对于 elasticsearch 的客户端工具,用来展示数据。 elasticsearch-head 是基于 JavaScript 语言编写的,可以使用 Nodejs 下的包管理器 npm 部署。 1 安装Nodejs nodejs下载地址: https://nodejs.org/en/dow…...

MySQL InnoDB表的碎片量化和整理(data free能否用来衡量碎片?)
网络上有很多MySQL表碎片整理的问题,大多数是通过demo一个表然后参考data free来进行碎片整理,这种方式对myisam引擎或者其他引擎可能有效(本人没有做详细的测试).对Innodb引擎是不是准确的,或者data free是不是可以参…...

Leetcode-每日一题1250. 检查「好数组」(裴蜀定理)
题目链接:https://leetcode.cn/problems/check-if-it-is-a-good-array/description/ 思路 方法:数论 题目意思很简单,让你在数组 nums中选取一些子集,可以不连续,子集中的每个数再乘以任意的数的和是否为1ÿ…...

OpenStack手动分布式部署环境准备【Queens版】
目录 1.基础环境准备(两个节点都需要部署) 1.1关闭防火墙 1.2关闭selinux 1.3修改主机名 1.4安装ntp时间服务器 1.5修改域名解析 1.6添加yum源 2.数据库安装配置 2.1安装数据库 2.2修改数据库 2.3重启数据库 2.4初始化数据库 3.安装RabbitMq…...

Web自动化测试——selenium的使用
⭐️前言⭐️ 本篇文章就进入了自动化测试的章节了,如果作为一名测试开发人员,非常需要掌握自动化测试的能力,因为它不仅能减少人力的消耗,还能提升测试的效率。 🍉欢迎点赞 👍 收藏 ⭐留言评论 …...
虚拟交换单元技术
支持VSU(Virtual Switch Unit)即虚拟交换单元技术。通过聚合链路连接,将多台物理设备虚拟为一台逻辑上统一的设备,使其能够实现统一的运行,利用单一IP 地址、单一Telnet 进程、单一命令行接口(CLI)、自动版本检查、自动…...

【STM32笔记】HAL库外部定时器、系统定时器阻塞、非阻塞延时
【STM32笔记】HAL库外部定时器、系统定时器阻塞、非阻塞延时 外部定时器 采用定时器做延时使用时 需要计算好分频和计数 另外还要配置为不进行自动重载 对于50MHz的工作频率 分频为50-1也就是50M/501M 一次计数为1us 分频为50000-1也就是1k 一次计数为1ms 我配置的是TIM6 只…...
[Springboot 单元测试笔记] - Mock 和 spy的使用
Springboot单元测试 - 依赖类mock测试 通常单元测试中,我们会隔离依赖对于测试类的影响,也就是假设所有依赖的一定会输出理想结果,在测试中可以通过Mock方法来确保输出结果,这也就引入另一个测试框架Mockito。 Mockito框架的作用…...

互联网新时代要来了(二)什么是AIGC?
什么是AIGC? 最近,又火了一个词“**AIGC”**2022年被称为是AIGC元年。那么我们敬请期待,AIGC为我们迎接人工智能的下一个时代。 TIPS:内容来自百度百科、知乎、腾讯、《AIGC白皮书》等网页 什么是AIGC?1.什么是AIGC?…...

75V的TVS二极管有哪些型号?常用的
瞬态抑制TVS二极管工作峰值反向电压最低3.3V,最高可达513V,甚至更高。很多电子工程师都知道,TVS二极管在实际应用选型过程中,第一步要确认的就是其工作峰值反向电压。2023年春节已过,东沃电子正月初八就开工了…...

测试开发之Django实战示例 第十章 创建在线教育平台
第十章 创建在线教育平台在上一章,我们为电商网站项目添加了国际化功能,还创建了优惠码和商品推荐系统。在本章,会建立一个新的项目:一个在线教育平台,并创内容管理系统CMS(Content Management System&…...

Hadoop高可用搭建(二)
目录 解压Hadoop 改名 更改配置文件 workers hdfs-site.xml core-site.xml hadoop-env.sh mapred-site.xml yarn-site.xml 设置环境变量 启动集群 启动zk集群 启动journalnode服务 格式化hfds namenode 启动namenode 同步namenode信息 查看namenode节点状态 …...
如何用企微SCRM管理系统发掘老客户的新增长点?
如何用企微SCRM管理系统发掘老客户的新增长点? 一直做投放拉新,很快营销成本会难以支撑,如果在私域运营中始终留不下老用户,那么运营也是失败的。 开发老客户的成本只需新客户成本的1/6,但很多企业对老客户都忽视了&…...

我用python疯狂爬取公司数据
我是半路从一个纯小白学过来的,学习途中也掉过许多坑,在这里建议新手要先把基础打扎实,然后再去学习自己需要的内容,不要想着全部学完再用,那样你是永远学不完的,用哪方面就学习哪方面的内容,不…...
EMR集群运行TPC-DS在云盘和OSS中的对比
1.简介 TPC-DS是大数据领域最为知名的Benchmark标准。本文介绍使用阿里云EMR集群运行TPC-DS在云盘和OSS中的表现对比。 2.环境准备 1.创建EEMR-5.10.1集群 1个master,2个core,3台机器都s是4c16g。 2.安装Git和Maven sudo yum install -y git maven3.下载TPC-DS Benchmark工…...

菜鸟在 windows 下 python 中安装 jupyter 踩坑要点 、被神化的 VsCode
我平时用不到 python ,更没用过 jupyter ,因此我的 python知识仅限于知道有 python 这么个编程语言,会写个 print("Hello World!!!") 而已,完全没听过 jupyter ,因为某些原因今天需要安装下 jupyter 看看&am…...

k8s简单搭建
前言 最近学习k8s,跟着网上各种教程搭建了简单的版本,一个master节点,两个node节点,这里记录下防止以后忘记。 具体步骤 准备环境 用Oracle VM VirtualBox虚拟机软件安装3台虚拟机,一台master节点,两台…...

计算机SCI期刊审稿人,一般关注论文的那些问题? - 易智编译EaseEditing
编辑主要关心: (1)文章内容是否具有足够的创新性? (2)文章主题是否符合期刊的受众读者? (3)文章方法学是否合理,数据处理是否充分? (…...
Docker迁移以及环境变量问题
问题一描述将docker容器通过docker export命令打包,传输到另外的服务器,再通过docker import命令导入后,发现原来docker容器中的环境变量失效了。解决方案1. 【无效方案】直接在docker容器中通过export命令设置环境变量。export LD_LIBRARY_P…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...