【机器学习数据集】如何获得机器学习的练习数据?
一、scikit-learn自带数据集
Scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。
自带的小的数据集为:sklearn.datasets.load_<name>
load_boston | Boston房屋价格 | 回归 | 506*13 |
fetch_california_housing | 加州住房 | 回归 | 20640*9 |
load_diabetes | 糖尿病 | 回归 | 442*10 |
load_digits | 手写字 | 分类 | 1797*64 |
load_breast_cancer | 乳腺癌 | 分类、聚类 | (357+212)*30 |
load_iris | 鸢尾花 | 分类、聚类 | (50*3)*4 |
load_wine | 葡萄酒 | 分类 | (59+71+48)*13 |
load_linnerud | 体能训练 | 多分类 | 20 |
怎么用:
数据集的信息关键字:
DESCR:
数据集的描述信息
data:
内部数据(即:X)
feature_names:
数据字段名
target:
数据标签(即:y)
target_names:
标签字段名(回归数据集无此项)
使用方法
(以load_iris为例)
数据介绍:
一般用于做分类测试
有150个数据集,共分为3类,每类50个样本。每个样本有4个特征。
每条记录都有 4 项特征:包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。
可以通过这4个特征预测鸢尾花卉属于(iris-setosa(山鸢尾), iris-versicolour(杂色鸢尾), iris-virginica(维吉尼亚鸢尾))中的哪一品种。
第一步:导入数据
from sklearn.datasets import load_iris
iris = load_iris()
第二步:定义X和y
X, y = iris.data, iris.target
此外,可以看下数据的维度:
X.shape,y.shape
输出为:
((150, 4), (150,))
查看特征名:
iris.feature_names输出为:
['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']
查看标签名:
iris.target_names输出为:array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
第三步:划分训练集和测试集:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
接下来就可以用机器学习算法进行训练和测试了。
小技巧:将数据转换为Dataframe格式(两种方法都可以):
import pandas as pd
df_X = pd.DataFrame(iris.data, columns=iris.feature_names)
#这个是X
df_y = pd.DataFrame(iris.target, columns=["target"])
#这个是y
df=pd.concat([df_X,df2],axis=1)#横向合并
df.head()
或者:
import numpy as np
import pandas as pd
col_names = iris['feature_names'] + ['target']
df = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns=col_names)
df.head()
输出结果一致:

二、可在线下载的数据集(需要下载)
下载的数据集为:sklearn.datasets.fetch_<name>
fetch_20newsgroups | 用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器 |
fetch_20newsgroups_vectorized | 这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器 |
fetch_california_housing | 加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_california_housing()['DESCR']了解每个属性的具体含义; |
fetch_covtype | 森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype()['DESCR']了解每个属性的具体含义 |
fetch_kddcup99 | KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征 |
fetch_lfw_pairs | 该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人。 |
fetch_lfw_people | 打好标签的人脸数据集 |
fetch_mldata | 从 mldata.org 中下载数据集 |
fetch_olivetti_faces | Olivetti 脸部图片数据集 |
fetch_rcv1 | 路透社新闻语聊数据集 |
fetch_species_distributions | 物种分布数据集 |
使用方法与自带数据集一致,只是多了下载过程(示例:fetch_20newsgroups)
from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all') #本次使用的数据需要到互联网上下载
from sklearn.model_selection import train_test_split
#对数据训练集和测试件进行划分
X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33)
三、生成数据集
可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解任务的,用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集合
make_blobs:多类单标签数据集,为每个类分配一个或多个正态分布的点集
make_classification:多类单标签数据集,为每个类分配一个或多个正态分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等
make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类
make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度
make_circle和make_moons:产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据
举例:
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
plt.title('make_moons function example')
plt.scatter(X[:,0],X[:,1],marker='o',c=y)
plt.show()

四、网页下载数据集
深度学习数据集
MS-COCO
COCO是一个可用于object detection, segmentation and caption的大型数据集。
http://cocodataset.org/#home
ImageNet
图像总数约1,500,000; 每个都有多个边界框和相应的类标签。
大小:约150GB
http://www.image-net.org
Yelp Reviews
它由数百万用户评论、商业类型和来自多个大型城市的超过20万张照片组成。这在全球都是一个非常常用的NLP挑战级数据集。
大小:2.66 GB JSON,2.9 GB SQL and 7.5 GB Photos(全部已压缩)
数量:5,200,000条评论,174,000条商业类型,20万张图片和11个大型城市
https://www.yelp.com/dataset
其它数据集
kaggle:
https://www.kaggle.com
天池:
https://tianchi.aliyun.com/dataset
搜狗实验室:
http://www.sogou.com/labs/resource/list_pingce.php
DC竞赛:
https://www.pkbigdata.com/common/cmptIndex.html
DF竞赛:
https://www.datafountain.cn/datasets
Google数据集
[需要科学上网]
https://toolbox.google.com/datasetsearch
科赛网
https://www.kesci.com/home/dataset
微软数据集
https://msropendata.com/
UCI机器学习数据库
大名鼎鼎的数据集网站,现在包含了557个数据集,其中绝大多数可以直接下载并且很多的论文中benchmark也来源于此。
https://archive.ics.uci.edu/ml/datasets.php
多类别分类数据集
里面包含了很多了多分类的数据集,有时序的和非时序的。
http://www.uco.es/kdis/mllresources/
参考资料:
https://mp.weixin.qq.com/s/VR6HDh89wNAUsZWGkoCKow
https://scikit-learn.org/stable/datasets/index.html
https://blog.csdn.net/fendouaini/article/details/79871922
本文主要参考以上资料整理,如果对您有帮助,希望您点赞+收藏+评论,您的支持是我更新的动力~
相关文章:

【机器学习数据集】如何获得机器学习的练习数据?
一、scikit-learn自带数据集Scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。自带的小的数据集为:sklearn.datasets.load_<name>load_bostonBoston房屋价格回归506*13fetch_california_housing加州住房回归20640…...

【编程实践】使用 Kotlin HTTP 框架 Fuel 实现 GET,POST 接口 kittinunf.fuel【极简教程】
目录 Fuel 简介 实现代码 GET网络请求用法(有三种写法...

大数据DataX(一):DataX的框架设计和插件体系
文章目录 DataX的框架设计和插件体系 一、DataX是什么...
软考高级信息系统项目管理师系列之十一:项目进度管理
软考高级信息系统项目管理师系列之十一:项目进度管理 一、进度管理领域输入、输出、工具和技术表二、项目进度管理1.项目进度管理过程2.项目进度管理三、项目进度管理过程1.项目进度管理2.工作包和活动3.活动清单4.活动属性5.项目进度网络图6.资源日历7.活动资源需求8.资源分解…...

vue2版本《后台管理模式》(下)
文章目录前言一、home 页以下都属于home子组件二、header 头部 组件二、Menu 页面三、Bread 面包屑四、Footer五 、分页器: Pageing六、权限管理总结前言 这章…...

软考中级-程序设计语言
(1)解释器解释源程序时不生成独立的目标代码,源程序和解释程序都参与到程序执行中。(2)编译器编译时生成独立的目标代码,运行时是运行与源程序等价的目标程序,源程序不参与执行。阶段补充&#…...

Sphinx : 高性能SQL全文检索引擎
Sphinx是一款基于SQL的高性能全文检索引擎,Sphinx的性能在众多全文检索引擎中也是数一数二的,利用Sphinx,我们可以完成比数据库本身更专业的搜索功能,而且可以有很多针对性的性能优化。 Sphinx的特点 快速创建索引:3分…...
ansible实战应用系列教程6:管理ansible变量
ansbile实战应用系列教程6:管理ansible变量 Ansible VariablesNaming VariablesDefining Variables在playbook中定义变量Defining Variables in Playbooks在playbooks中使用VariablesHost Variables and Group Variables使用group_vars和host_vars目录命令行定义全局变量Varia…...
java8新特性Stream流中anyMatch和allMatch和noneMatch的区别详解
1、anyMatch 判断数据列表中是否存在任意一个元素符合设置的predicate条件,如果是就返回true,否则返回false。 接口定义: boolean anyMatch(Predicate<? super T> predicate); 方法描述: 在anyMatch 接口定义中是接收 Pr…...

双网卡(有线和wifi)同时连接内网和外网
双网卡(有线和wifi)同时连接内网和外网 Win10技巧:如何修改有线/WiFi网络优先级:https://www.ithome.com/html/win10/253612.htm双网卡实现两个网络的自由访问:https://blog.51cto.com/ghostlan/1299090Linux服务器安…...

如何赋能智能运维,迈出数字化黑匣子第一步?
在当下大数据时代,诸多行业专家为企业智能运维绘出美好蓝图。在该蓝图中,互联网、云计算、大数据分析联合发力,企业在能“攻”能“守”中快速、可持续发展。何为“攻”?对支撑企业产品研发、生产、管理、营销等各业务链条的IT基础…...

消息称索尼计划为PS5推出两款蓝牙耳机,Find My蓝牙耳机用途广
根据国外科技媒体 Insider Gaming 报道,索尼计划进一步丰富 PlayStation 5 的配件生态,将会推出两款耳机,一款采用类似于 AirPods 的 TWS 设计,另一款则是无线头戴式耳机。 消息称 TWS 耳机的内部代号为“Project Nomad”&#…...

状态管理VueX
哈喽~大家好,这篇来看看状态管理VueX。 🥇个人主页:个人主页 🥈 系列专栏:【专栏】 🥉与这篇相关的文章: SpringCloud Sentinel 使用SpringClou…...
i.MX8MP平台开发分享(clock篇)- PLL14xx驱动
专栏目录:专栏目录传送门 平台内核i.MX8MP5.15.71文章目录 clk_pll14xx_prepareclk_pll14xx_is_preparedclk_pll1443x_set_rateclk_pll14xx_round_rateclk_pll1443x_recalc_rate在前面的文章i.MX8MP平台开发分享(clock篇)- 各类clock的注册,我们提到VIDEO_PLL1,GPU_PLL等P…...

课程规范性要求
课程制作规范 图片规范 允许范围:CC协议 / 作者授权 / 网站代理授权书 图片大小要求:1600 x 1200 dpi 图片长宽比:4:3 每章节格式要求 Week number 本周目标 1.通过背景学习,了解四足机器狗mini pupper上的微型控…...
华为OD机试 - 优秀学员统计(Python)| 真题+思路+考点+代码+岗位
优秀学员统计 题目 公司某部门软件教导团正在组织新员工每日打卡学习活动,他们开展这项学习活动已经一个月了,所以想统计下这个月优秀的打卡员工。每个员工会对应一个 id,每天的打卡记录记录当天打卡员工的 id 集合,一共 30 天。 请你实现代码帮助统计出打卡次数 top5 的…...

布林线(BOLL)计算公式详解,开口收口代表什么
布林带,英文名称BOLL,是John Bollinger在上世纪八十年代创建的,由中轨、上轨、下轨三条线组成。 一、布林线计算公式详解 布林线中轨是简单移动平均线,一般软件上自带的布林带中轨是20日均线,上轨是中轨加上2个标准差…...
模糊的照片能修复吗?
用照片记录生活,虽然不一定拍得好,但这也是生活应该有的样子。而我们拍得不好,常见就是拍出了模糊的照片,这可能是因为没有对焦或者是手抖了一下,就成了模糊的照片。更多时候未能及时发现,等到想分享一下才…...

【Java|多线程与高并发】详解start()方法和run()方法的区别
文章目录前言1.start()方法和run()方法2.不能两次调用start()方法3.线程的执行是随机的start()方法和run()方法的执行顺序不一定相同4.run()方法由JVM调用public Thread(Runnable target)中的target前言 本篇文章主要讲解以下几个问题: start()方法和run()方法的区别与联系为…...
mysql 一些有意思的sql语句,备忘
### 批量插入 INSERT INTO 表名 (字段列表) VALUES (字段对应的值),(字段对应的值),(字段对应的值),(字段对应的值), js 代码示例: function batchAddOrde…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
raid存储技术
1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划,涵盖存储系统的布局、数据存储策略等,它明确数据如何存储、管理与访问,为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...