《程序员面试金典(第6版)》面试题 16.25. LRU 缓存(自定义双向链表,list库函数,哈希映射)
题目描述
设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量。当缓存被填满时,它应该删除最近最少使用的项目。
题目传送门:面试题 16.25. LRU 缓存
-
它应该支持以下操作: 获取数据 get 和 写入数据 put 。
-
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
-
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
解题思路与代码
-
这道题我觉得还是有点迷惑性的,假如说不了解什么是LRU缓存,可能会被“删除最近最少使用”这句话给蒙蔽了双眼,而给出了错误的答案。
-
你可能以为,我需要删除的是访问次数相同的,最近的那个内存,其实不是的。
-
LRU的原理是,如果数据最近被访问过,那么将来被访问的几率也更高。因此,我们在缓存满的时候,会淘汰最长时间未被访问的数据。 -
所以说,做这道题的时候,被误导了一下有点难受的。不过知道了原理,其实这道题也没有那么的困难。这道题的核心是
删除最长时间未被访问过的内存,也就是说,想办法解决了这个问题,这道题也就迎刃而解了。 -
我们可以考虑用
双向链表 + unordered_map去解决这个问题,我们每次添加元素,都从头开始添加。内存满了,删除元素都从队列尾部删除,是不是完美的符合了删除最长时间不访问这个元素的需求。 -
最后,我们访问一个链表内的元素,我们就把这个元素,先从链表中删除,把它从新添加到链表头部,是不是也完美符合题意?
-
那unordered_map的作用是什么呢?它的作用就是让你快速知道你的这查找的这个元素是否在链表内,它的查找复杂度是O(1)的。
-
而双向链表的添加和删除节点的操作本身的时间复杂度也是O(1)的。所以用这两种数据结构,可以完美的去均摊这个时间复杂度。
那又因为面试官考你这道题,肯定是想要考你自定义双向链表的,而不是想看你用库函数。所以我们要自己掌握,如何创建并使用一个自定义的双向链表。
其次,这就意味着库函数的双向链表不重要了吗?恰恰相反,它也十分重要,真正的工作中,肯定也是不可能让你自己创建链表的。所以,矛盾又不矛盾。
那接下来,就看我给大家展现这两种解法的代码都是如何写的吧~
方案一:自定义双向链表 + unordered_map
- 在这道题当中,我们需要实现两个函数,
get 和 put。 - get函数就是查找缓存中对应key的value。put函数就是把元素放到容器内,如果容器满了,就挑一个删除了,再添加。
- 根据题意,当容器满了时,
我们要删除的元素是,最长时间未被使用的元素,这里我们使用的容器是双向链表,我们每次都从链表的头部开始添加元素,如果容器满了,需要删除的元素就一定是容器尾部的元素。 - 再者,我们如果查询了这个元素,而这个元素又在容器内的话,我们就要把它重新移动到头部,那如何移动呢?自然是删除后再添加啦,从当前位置删除,从链表头部添加。
- 这个自定义双向链表,我设置两个哨兵节点,分别是
head与tail,这会使等会的链表操作变得非常的简单。具体的双向链表的其他实现,就请大家来看看代码啦~
具体的代码如下:
class LRUCache {
public:struct Node{int key;int val;Node * prev;Node * next;Node(int k, int v) : key(k), val(v), prev(nullptr), next(nullptr){};};LRUCache(int capacity) : cap(capacity), size(0), head(new Node(-1,-1)), tail(new Node(-1,-1)) {head->next = tail;tail->prev = head;}int get(int key) {if(map.find(key) == map.end()) return -1;moveNode(map[key]);return map[key]->val;}void put(int key, int value) {if(map.find(key) != map.end()){map[key]->val = value;moveNode(map[key]);}else{if(size == cap){map.erase(tail->prev->key);removeFromList(tail->prev);--size;}Node * node = new Node(key,value);addToHead(node);map[key] = node;++size;}}
private:int cap;int size;Node * head;Node * tail;unordered_map<int,Node*> map;void addToHead(Node * node){node->next = head->next;node->prev = head;head->next->prev = node;head->next = node;}void removeFromList(Node * node){node->next->prev = node->prev;node->prev->next = node->next;}void moveNode(Node * node){removeFromList(node);addToHead(node);}
};

复杂度分析:
这个 LRU 缓存的实现,无论是 get 还是 put 操作,都可以在常数时间内完成,因此时间复杂度是 O(1)。
-
这是因为,我们通过哈希表实现了对任意键值的快速查询,查询的时间复杂度是 O(1)。
- 对于哈希表中存储的每个键值对,我们都有一个对应的链表节点。当需要将某个键值对提到最近使用的位置时,我们可以直接通过哈希表找到对应的链表节点,然后在 O(1) 时间内将其移动到链表的头部。同样,当缓存容量已满,需要淘汰最久未使用的键值对时,我们也可以在 O(1) 时间内从链表尾部删除一个节点。
-
对于空间复杂度,因为哈希表和链表都存储了整个数据,所以空间复杂度是 O(capacity),其中 capacity 是缓存的最大容量。
方案二:使用list + unordered_map
- 这种做法,最大的好处就是带你重新复习了一遍list容器中,各种函数的操作。如果你对list函数的操作不太熟悉的话,你可以看下我写的这篇文章:全面理解:C++中list(双向链表)容器的基础概念与函数解析
其他没什么了,代码的逻辑和上一种一模一样。
具体的代码如下:
class LRUCache {
public:LRUCache(int capacity) : cap(capacity) {}int get(int key) {if(map.find(key) == map.end()) return -1;cache.splice(cache.begin(),cache,map[key]);return map[key]->second;}void put(int key, int value) {if(map.find(key) != map.end()){cache.splice(cache.begin(),cache,map[key]);map[key]->second = value;}else{if(cache.size() == cap){map.erase(cache.back().first);cache.pop_back(); }cache.push_front({key,value});map[key] = cache.begin();}}
private:int cap;list<pair<int,int>> cache;unordered_map<int,list<pair<int,int>>::iterator> map;
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
复杂度分析:
时间复杂度:
- get 方法:O(1)。unordered_map 用哈希实现,所以查找的平均时间复杂度是O(1),list::splice方法的时间复杂度也是O(1)。
- put 方法:O(1)。unordered_map的插入和删除操作的平均时间复杂度都是O(1),list::push_front和list::pop_back也都是O(1)。
空间复杂度:
- O(capacity)。list和unordered_map都存储了缓存中的所有元素,所以空间复杂度与缓存的容量成正比。
这就是为什么我们使用 list 和 unordered_map 结构来实现 LRU 缓存的原因,它们可以确保所有操作都在常数时间复杂度内完成,而且空间复杂度与缓存的容量成正比。
总结
这道题主要是为了测试你对LRU(Least Recently Used)缓存淘汰策略的理解和实现能力,同时也在考察你的数据结构设计能力。
-
LRU缓存淘汰策略在实际中广泛应用,例如在数据库缓存、浏览器缓存等场景中,都会有其身影。其核心思想是“如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小”。因此,这种算法可以用于预测哪些数据应该被替换出去,从而使缓存的命中率最大。
-
实现这个策略需要用到的数据结构包括哈希表(HashMap)和双向链表(Doubly LinkedList)。其中,哈希表提供了快速查找,而双向链表则可以用来调整数据的优先级。
通过这道题,你可以锻炼并展示出你对以上各种技术和数据结构的掌握程度。同时,这也是一种非常实用的技能,可以直接应用于你未来的项目和工作中。
最后的最后,如果你觉得我的这篇文章写的不错的话,请给我一个赞与收藏,关注我,我会继续给大家带来更多更优质的干货内容。
相关文章:
《程序员面试金典(第6版)》面试题 16.25. LRU 缓存(自定义双向链表,list库函数,哈希映射)
题目描述 设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量。当缓存被填满时,它应该删除最近最少使用的项目。 题目传送门:…...
kong网关启用jwt认证插件
认证流程: 1、创建一个用户 2、生成jwt的所需要的key和密钥 3、在https://jwt.io/的生成jwt token 4、启用jwt插件 5、发送请求的时候携带jwt的token信息 官方指导:https://docs.konghq.com/hub/kong-inc/jwt/configuration/examples/ 一、创建一个新的…...
day12 - 图像修复
在图像处理的过程中,经常会遇到图像存在多余的线条或者噪声的情况,对于这种情况我们会先对图像进行预处理,去除掉对图形内容有影响的噪声,在进行后续的处理。 本节实验我们介绍使用图像膨胀来处理图形的多余线条,进行…...
1720_Linux学习中的问题处理
全部学习汇总:GreyZhang/little_bits_of_linux: My notes on the trip of learning linux. (github.com) 这个有点学习的方法论的意思,画个滋味导图顺便整理一下。 遇到问题的时候,解决的方法大致有3中,而针对学习的建议有一部分是…...
七人拼团系统开发模式详解
七人拼团是最近兴起的一个模式,它通过更人性化的奖励机制,将产品利润最大化让利给参与拼团的用户,达到促进用户主动积极裂变和团队平台引流提升销量的效果,下面就来详细说一下这个模式。 七人拼团最大的特点,就是结合了…...
CPU性能优化:分支预测
条件跳转引起的控制冒险虽然也可以通过在流水线中插入空泡来避免,但是当流水线很深时,需要插入更多的空泡。一个20级的流水线为例,如果一条指令需要上一条指令的执行结束才能执行,则需要在这两条指令之间插入19个空泡,…...
过滤器Filter,拦截器Interceptor
过滤器Filter 快速入门 详情 登录校验-Filter package com.itheima.filter;import com.alibaba.fastjson.JSONObject; import com.itheima.pojo.Result; import com.itheima.utils.JwtUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.util.StringUtils…...
kafka整理
kafka整理 一、kafka概述 kafka是apache旗下一款开源的顶级的消息队列的系统, 最早是来源于领英, 后期将其贡献给apache, 采用语言是scala.基于zookeeper, 启动kafka集群需要先启动zookeeper集群, 同时在zookeeper记录kafka相关的元数据 kafka本质上就是消息队列的中间件产品…...
为什么有些情况下需要重写equals()和hashCode()方法?
目录 方法作用实战案例 方法作用 equals():判断对象是否相等,比如判断是否能放入Set集合中 情况1:没有重写equals()方法:由于所有类的默认基类都是Object类,所以默认使用Object类的equals()方法,那就是对象…...
14-Vue技术栈之Vue3快速上手
目录 1.Vue3简介2. Vue3带来了什么2.1 性能的提升2.2 源码的升级2.3 拥抱TypeScript2.4 新的特性 1、海贼王,我当定了!——路飞 2、人,最重要的是“心”啊!——山治 3、如果放弃,我将终身遗憾。——路飞 4、人的梦想是…...
JavaScript高级三、深入面向对象
零、文章目录 JavaScript高级三、深入面向对象 1、编程思想 (1)面向过程介绍 面向过程:分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步实现,使用的时候再一个一个的依次调用就可以了。 (2&…...
static
1. 静态局部变量 : 用于函数体的内部修饰变量,这种变量的生存期长于该函数。 2. 静态全局变量: 定义在函数体外,用于修饰全局变量,表示该变量只在本文件可见。 3. 静态函数: 准确的说,静态函数跟…...
zabbix动作执行失败 No media defined for user.
问题 zabbix动作执行失败 No media defined for user. 详细问题 解决方案 1(导航栏)用户 → \rightarrow →报警媒介 → \rightarrow →添加 2 选择类型 → \rightarrow →收件人 → \rightarrow →添加 3 更新 解决原因 笔者由于未点击更新钮导…...
JavaScript this 关键字
在JavaScript中,this关键字是一个特殊的关键字,它在函数内部使用,用于引用当前执行上下文中的对象。 this的值是在函数调用时动态确定的,它取决于函数的调用方式。下面列举了几种常见的调用方式和this的取值: 1. 全局…...
ubuntu基本信息查询
查询CPU信息 cat /proc/cpuinfo cat /proc/stat top lscpu 查询内存 free -m Options: -b, --bytes show output in bytes -k, --kilo show output in kilobytes -m, --mega show output in megabytes -g, --giga show output in gigab…...
Revit问题:创建牛腿柱和快速生成圈梁
一、Revit中如何用体量创建牛腿柱 牛腿:悬臂体系的挂梁与悬臂间必然出现搁置构造,通常就将悬臂端和挂梁端的局部构造,又称梁托。牛腿的作用是衔接悬臂梁与挂梁, 并传递来自挂梁的荷载。牛腿柱可以用于桥梁、厂房的搭建,…...
k8s节点删除
1.设置该节点为不可调度状态 kubectl cordon k8s-node01 2.驱逐该节点上的pod kubectl drain k8s-node01 --ignore-daemonsets --delete-local-data 若是有pod删除不掉则加上--force参数强制驱逐 3.从集群中删除该node节点 kubectl delete node k8s-node01 4.在k8s-node…...
45°装备系统
45装备系统,规则:1、45 脚后剧情,场景地面出现,个体视角,非群体。2、产生寒暖对立,衣饰自动改变。3、地图下方块蛇,脚步顺逆差,让衣饰自动改变后出现形态特效。(形成进入…...
逻辑漏洞学习-身份验证漏洞
逻辑漏洞就是程序在实现业务逻辑上存在的错误,辑漏洞的出现通常是因为程序在设计业务逻辑时考虑不够全面,或者程序员的思维过程存在瑕疵,没有充分考虑到各种可能的情况 大部分程序员在设计的时候,目标是实现功能需求,…...
【ChatGPT】ChatGPT自动生成思维导图
参考视频:https://edu.csdn.net/learn/38346/613917 应用场景:自学,“研一学生如何学习机器学习”的思维导图 问:写一个“研一学生如何学习机器学习”的思维导图内容,以markdown代码块格式输出 # 研一学生如何学习…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
