损失函数——交叉熵损失(Cross-entropy loss)
交叉熵损失(Cross-entropy loss)是深度学习中常用的一种损失函数,通常用于分类问题。它衡量了模型预测结果与实际结果之间的差距,是优化模型参数的关键指标之一。以下是交叉熵损失的详细介绍。
假设我们有一个分类问题,需要将输入数据x分为C个不同的类别。对于每个输入数据x,我们定义一个C维的向量y^,其中y^i表示x属于第i个类别的概率。我们的目标是使得y^尽可能接近真实的标签y的概率分布。
假设真实标签y是一个C维的向量,其中只有一个元素为1,其余元素为0,表示x属于第k个类别。那么,我们可以使用交叉熵损失来衡量模型预测结果和真实标签之间的差距。交叉熵损失的公式如下:
其中,xi表示真实标签的第i个元素,yi表示模型预测x属于第i个类别的概率。
交叉熵损失的本质是衡量两个概率分布之间的距离。其中一个概率分布是真实标签y的分布,另一个是模型预测的概率分布y^。对于每个类别i,yi表示真实标签x属于第i个类别的概率,y^i表示模型预测x属于第i个类别的概率。当两个概率分布越接近时,交叉熵损失越小,表示模型预测结果越准确。
交叉熵损失是一种凸函数,通常使用梯度下降等优化算法来最小化它。在深度学习中,交叉熵损失是常见的分类损失函数之一,广泛应用于图像分类、语音识别等任务中。
在PyTorch中,交叉熵损失可以使用torch.nn.CrossEntropyLoss实现。该函数将输入数据视为模型输出的概率分布,将目标标签视为类别索引,并计算这些概率与实际标签之间的交叉熵损失。
以下是一个示例代码片段,说明如何使用torch.nn.CrossEntropyLoss计算交叉熵损失:
import torch# 创建模型输出和目标标签
output = torch.randn(10, 5) # 10个样本,5个类别
target = torch.tensor([1, 0, 4, 2, 3, 1, 0, 4, 2, 3]) # 目标类别索引# 创建交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss()# 计算损失
loss = criterion(output, target)print(loss)
在训练中,你可以使用torch.nn.CrossEntropyLoss作为损失函数来优化模型。假设你已经有一个PyTorch模型和训练数据集,以下是一个简单的训练循环示例,它使用交叉熵损失函数来训练模型:
import torch
import torch.nn as nn
import torch.optim as optim# 定义模型
class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 2)def forward(self, x):x = self.fc1(x)x = nn.functional.relu(x)x = self.fc2(x)return xmodel = MyModel()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)# 训练循环
for epoch in range(num_epochs):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if batch_idx % log_interval == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))
在这个例子中,MyModel是一个简单的两层全连接神经网络。训练循环通过从数据集中加载数据批次,使用optimizer.zero_grad()清空梯度,计算模型输出和损失,使用loss.backward()计算梯度并使用optimizer.step()更新模型参数。每个epoch结束时,模型将在测试集上进行评估,以检查其在新数据上的泛化能力。
在这个训练循环中,我们使用nn.CrossEntropyLoss()作为损失函数,并传递模型输出和目标标签作为参数。loss.backward()计算梯度并将梯度传播回模型中的参数,从而使优化器能够更新这些参数以最小化损失。
相关文章:
损失函数——交叉熵损失(Cross-entropy loss)
交叉熵损失(Cross-entropy loss)是深度学习中常用的一种损失函数,通常用于分类问题。它衡量了模型预测结果与实际结果之间的差距,是优化模型参数的关键指标之一。以下是交叉熵损失的详细介绍。 假设我们有一个分类问题࿰…...
电商ERP接口erp进销存接口
电商API详情接口在ERP中的重要性 电商行业的发展已经改变了人们的消费方式。作为一种连续不断涌现并不断发展的新型销售方式,电商具有开创新市场、大众化消费、商业模式的多样化、效率的提高等优势,对传统零售业产生了极大的冲击。而ERP作为企业资源规划…...
leetcode 922. 按奇偶排序数组 II
题目描述解题思路执行结果 leetcode 922. 按奇偶排序数组 II. 题目描述 按奇偶排序数组 II 给定一个非负整数数组 nums, nums 中一半整数是 奇数 ,一半整数是 偶数 。 对数组进行排序,以便当 nums[i] 为奇数时,i 也是 奇数 &#…...
Unity四叉树地图
当使用Unity构建大规模的游戏地图或场景时,使用四叉树数据结构可以提高性能和效率。四叉树是一种基于分割的数据结构,将空间划分为四个相等的子区域,并以递归方式构建树结构。在游戏开发中,四叉树常用于空间分区、碰撞检测和可视化…...
【unity插件】OpenFracture插件实现物体破裂和切割
插件地址 https://github.com/Mustenaka/OpenFracture 使用注意事项 1.如果要导入自定义网格,则必须在导入设置中将“启用读/写”设置为 true。否则,您将收到错误。 2.网格必须是非相交和封闭的。否则,重新三角测量将失败。 上面描绘的是凳子的线框模型。注意横杆如何与…...
Spring Security实现登录
前言 Spring Security是Spring框架下的一个用于身份验证和授权的框架,它可以帮忙管理web应用中的用户认证、授权以及安全性问题。本文将介绍如何使用Spring Security实现用户登录功能,本文主要包括以下内容: 环境准备Spring Security核心概…...
小狐狸ChatGPT付费创作系统1.9.7独立版 + H5端 + 小程序前端增加AI绘画+GPT4接口
小狐狸ChatGPT 1.9.7独立版经播播资源测试了版本比较,本版核心增加了GPT4.0接口功能,小程序端内置了AI绘画功能。体验下来问答速度感觉体验更好。小程序端有更新请对应开发工具更新上传,本版无开源端。播播资源提供的安装教程详见下方&#x…...
双目测距联合YOLOv8 项目总结
代码贴:双目测距--5 双目相机 联合 YOLOv8_爱钓鱼的歪猴的博客-CSDN博客 0、图片筛选 可以用matlab,对双目图像做个一个筛选,也就是做双目标定。 熟悉matlab的小伙伴完全可以用matlab做双目标定,我是没咋接触过不知道怎么导出标定结果&#…...
Windows提权:利用MSSQL数据库,Oracle数据库
目录 MSSQL提权:使用xp_cmdshell进行提权 MSSQL:使用sp_OACreate进行提权 MSSQL:使用沙盒提权 Oracle提权:工具一把梭哈 总结 MSSQL在Windows server类的操作系统上,默认具有system权限。 MSSQL提权:使…...
linux常见的二十多个指令
目录 一、指令的概念 二、28个常见的指令 ⭐2.1 ls指令 ⭐2.2 pwd指令 ⭐2.3 cd指令 ⭐2.4tree指令 ⭐2.5 mkdir指令 ⭐2.6 touch指令 ⭐2.7 rmdir指令 ⭐2.8 rm指令 ⭐2.9 clear指令 ⭐2.10 man指令 ⭐2.11 cp指令 ⭐2.12 mv指令 ⭐2.13 cat指令(适…...
内蒙古自治区住房和城乡建设分析及解决方案
安科瑞 徐浩竣 江苏安科瑞电器制造有限公司 zx acrelxhj 摘 要:为深入贯彻落实《国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知》(国办发 ﹝2020﹞39号)、《国家发展改革委等部门关于进一步提升…...
JavaEE进阶5/25(属性注入)
目录 1.更简单的存取Spring对象 2.获取Bean对象(对象装配)DI 3. Resource注入 4.Resource注入和Autowired注入的区别 1.更简单的存取Spring对象 2.获取Bean对象(对象装配)DI 对象装配(对象注入)有三种方…...
【Java学习记录-4】相关名词和概念记录(持续更新)
目录 1 注解2 包3 权限修饰符4 状态修饰符1. final2. static 5. 多态6.抽象类7.接口 1 注解 Override是一个注解,可以帮助我们检查重写方法的方法声明的正确性 注意: 私有方法不能被重写(父类私有成员子类是不能继承的)子类方法…...
《程序员面试金典(第6版)》面试题 16.25. LRU 缓存(自定义双向链表,list库函数,哈希映射)
题目描述 设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量。当缓存被填满时,它应该删除最近最少使用的项目。 题目传送门:…...
kong网关启用jwt认证插件
认证流程: 1、创建一个用户 2、生成jwt的所需要的key和密钥 3、在https://jwt.io/的生成jwt token 4、启用jwt插件 5、发送请求的时候携带jwt的token信息 官方指导:https://docs.konghq.com/hub/kong-inc/jwt/configuration/examples/ 一、创建一个新的…...
day12 - 图像修复
在图像处理的过程中,经常会遇到图像存在多余的线条或者噪声的情况,对于这种情况我们会先对图像进行预处理,去除掉对图形内容有影响的噪声,在进行后续的处理。 本节实验我们介绍使用图像膨胀来处理图形的多余线条,进行…...
1720_Linux学习中的问题处理
全部学习汇总:GreyZhang/little_bits_of_linux: My notes on the trip of learning linux. (github.com) 这个有点学习的方法论的意思,画个滋味导图顺便整理一下。 遇到问题的时候,解决的方法大致有3中,而针对学习的建议有一部分是…...
七人拼团系统开发模式详解
七人拼团是最近兴起的一个模式,它通过更人性化的奖励机制,将产品利润最大化让利给参与拼团的用户,达到促进用户主动积极裂变和团队平台引流提升销量的效果,下面就来详细说一下这个模式。 七人拼团最大的特点,就是结合了…...
CPU性能优化:分支预测
条件跳转引起的控制冒险虽然也可以通过在流水线中插入空泡来避免,但是当流水线很深时,需要插入更多的空泡。一个20级的流水线为例,如果一条指令需要上一条指令的执行结束才能执行,则需要在这两条指令之间插入19个空泡,…...
过滤器Filter,拦截器Interceptor
过滤器Filter 快速入门 详情 登录校验-Filter package com.itheima.filter;import com.alibaba.fastjson.JSONObject; import com.itheima.pojo.Result; import com.itheima.utils.JwtUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.util.StringUtils…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
