Model-Free TD Control: Sarsa

import time
import random
# 相对于Q 效果会差一些
class Env():def __init__(self, length, height):# define the height and length of the mapself.length = lengthself.height = height# define the agent's start positionself.x = 0self.y = 0def render(self, frames=50):for i in range(self.height):if i == 0: # cliff is in the line 0line = ['S'] + ['x']*(self.length - 2) + ['T'] # 'S':start, 'T':terminal, 'x':the cliffelse:line = ['.'] * self.lengthif self.x == i:line[self.y] = 'o' # mark the agent's position as 'o'print(''.join(line))print('\033['+str(self.height+1)+'A') # printer go back to top-lefttime.sleep(1.0 / frames)def step(self, action):"""4 legal actions, 0:up, 1:down, 2:left, 3:right"""change = [[0, 1], [0, -1], [-1, 0], [1, 0]]self.x = min(self.height - 1, max(0, self.x + change[action][0]))self.y = min(self.length - 1, max(0, self.y + change[action][1]))states = [self.x, self.y]reward = -1 # 每一步的奖赏terminal = Falseif self.x == 0: # if agent is on the cliff line "SxxxxxT"if self.y > 0: # if agent is not on the start positionterminal = Trueif self.y != self.length - 1: # if agent fallsreward = -100 # 进入悬崖的奖赏return reward, states, terminaldef reset(self):self.x = 0self.y = 0class Q_table():def __init__(self, length, height, actions=4, alpha=0.1, gamma=0.9):self.table = [0] * actions * length * height # initialize all Q(s,a) to zeroself.actions = actionsself.length = lengthself.height = heightself.alpha = alphaself.gamma = gammadef _index(self, a, x, y):"""Return the index of Q([x,y], a) in Q_table."""return a * self.height * self.length + x * self.length + ydef _epsilon(self):return 0.1 # 可更改# version for better convergence:# """At the beginning epsilon is 0.2, after 300 episodes decades to 0.05, and eventually go to 0."""# return 20. / (num_episode + 100)def take_action(self, x, y, num_episode):"""epsilon-greedy action selection"""if random.random() < self._epsilon():return int(random.random() * 4)else:actions_value = [self.table[self._index(a, x, y)] for a in range(self.actions)]return actions_value.index(max(actions_value))def epsilon_q(self, x, y): # 更改actions_value = [self.table[self._index(a, x, y)] for a in range(self.actions)]# 更改return max(actions_value) if random.random() > self._epsilon() else actions_value[int(random.random() * 4)]def update(self, a, s0, s1, r, is_terminated):# both s0, s1 have the form [x,y]q_predict = self.table[self._index(a, s0[0], s0[1])]if not is_terminated:q_target = r + self.gamma * self.epsilon_q(s1[0], s1[1]) # 更改else:q_target = rself.table[self._index(a, s0[0], s0[1])] += self.alpha * (q_target - q_predict)def cliff_walk():env = Env(length=12, height=4)table = Q_table(length=12, height=4)for num_episode in range(5000):# within the whole learning processepisodic_reward = 0is_terminated = Falses0 = [0, 0]while not is_terminated:# within one episodeaction = table.take_action(s0[0], s0[1], num_episode)r, s1, is_terminated = env.step(action)table.update(action, s0, s1, r, is_terminated)episodic_reward += r# env.render(frames=100)s0 = s1if num_episode % 1 == 0:print("Episode: {}, Score: {}".format(num_episode, episodic_reward))env.reset()cliff_walk()
Episode: 0, Score: -100
Episode: 20, Score: -147
Episode: 40, Score: -48
Episode: 60, Score: -131
Episode: 80, Score: -54
Episode: 100, Score: -63
Episode: 120, Score: -39
Episode: 140, Score: -100
Episode: 160, Score: -38
Episode: 180, Score: -31
Episode: 200, Score: -28
Episode: 220, Score: -25
Episode: 240, Score: -17
Episode: 260, Score: -26
Episode: 280, Score: -103
Episode: 300, Score: -17
Episode: 320, Score: -100
Episode: 340, Score: -17
Episode: 360, Score: -21
Episode: 380, Score: -23
Episode: 400, Score: -19
Episode: 420, Score: -24
Episode: 440, Score: -23
Episode: 460, Score: -100
Episode: 480, Score: -16
Episode: 500, Score: -17
Episode: 520, Score: -28
Episode: 540, Score: -15
Episode: 560, Score: -15
Episode: 580, Score: -17
Episode: 600, Score: -100
Episode: 620, Score: -19
Episode: 640, Score: -19
Episode: 660, Score: -102
Episode: 680, Score: -17
Episode: 700, Score: -16
Episode: 720, Score: -17
Episode: 740, Score: -19
Episode: 760, Score: -115
Episode: 780, Score: -15
Episode: 800, Score: -17
Episode: 820, Score: -16
Episode: 840, Score: -15
Episode: 860, Score: -15
Episode: 880, Score: -17
Episode: 900, Score: -17
Episode: 920, Score: -19
Episode: 940, Score: -17
Episode: 960, Score: -18
Episode: 980, Score: -23
Episode: 1000, Score: -19
Episode: 1020, Score: -18
Episode: 1040, Score: -17
Episode: 1060, Score: -20
Episode: 1080, Score: -17
Episode: 1100, Score: -17
Episode: 1120, Score: -19
Episode: 1140, Score: -21
Episode: 1160, Score: -24
Episode: 1180, Score: -20
Episode: 1200, Score: -21
Episode: 1220, Score: -19
Episode: 1240, Score: -19
Episode: 1260, Score: -17
Episode: 1280, Score: -23
Episode: 1300, Score: -17
Episode: 1320, Score: -15
Episode: 1340, Score: -15
Episode: 1360, Score: -15
Episode: 1380, Score: -20
Episode: 1400, Score: -19
Episode: 1420, Score: -17
Episode: 1440, Score: -15
Episode: 1460, Score: -17
Episode: 1480, Score: -15
Episode: 1500, Score: -15
Episode: 1520, Score: -15
Episode: 1540, Score: -15
Episode: 1560, Score: -18
Episode: 1580, Score: -17
Episode: 1600, Score: -15
Episode: 1620, Score: -20
Episode: 1640, Score: -17
Episode: 1660, Score: -117
Episode: 1680, Score: -21
Episode: 1700, Score: -21
Episode: 1720, Score: -22
Episode: 1740, Score: -18
Episode: 1760, Score: -19
Episode: 1780, Score: -17
Episode: 1800, Score: -19
Episode: 1820, Score: -19
Episode: 1840, Score: -17
Episode: 1860, Score: -20
Episode: 1880, Score: -17
Episode: 1900, Score: -21
Episode: 1920, Score: -17
Episode: 1940, Score: -17
Episode: 1960, Score: -15
Episode: 1980, Score: -17
Episode: 2000, Score: -15
Episode: 2020, Score: -19
Episode: 2040, Score: -17
Episode: 2060, Score: -19
Episode: 2080, Score: -18
Episode: 2100, Score: -17
Episode: 2120, Score: -18
Episode: 2140, Score: -18
Episode: 2160, Score: -17
Episode: 2180, Score: -21
Episode: 2200, Score: -20
Episode: 2220, Score: -21
Episode: 2240, Score: -18
Episode: 2260, Score: -17
Episode: 2280, Score: -17
Episode: 2300, Score: -18
Episode: 2320, Score: -18
Episode: 2340, Score: -17
Episode: 2360, Score: -17
Episode: 2380, Score: -19
Episode: 2400, Score: -18
Episode: 2420, Score: -100
Episode: 2440, Score: -19
Episode: 2460, Score: -23
Episode: 2480, Score: -19
Episode: 2500, Score: -19
Episode: 2520, Score: -18
Episode: 2540, Score: -18
Episode: 2560, Score: -19
Episode: 2580, Score: -21
Episode: 2600, Score: -18
Episode: 2620, Score: -21
Episode: 2640, Score: -20
Episode: 2660, Score: -17
Episode: 2680, Score: -19
Episode: 2700, Score: -18
Episode: 2720, Score: -19
Episode: 2740, Score: -22
Episode: 2760, Score: -19
Episode: 2780, Score: -22
Episode: 2800, Score: -17
Episode: 2820, Score: -17
Episode: 2840, Score: -18
Episode: 2860, Score: -17
Episode: 2880, Score: -21
Episode: 2900, Score: -21
Episode: 2920, Score: -17
Episode: 2940, Score: -18
Episode: 2960, Score: -17
Episode: 2980, Score: -19
Episode: 3000, Score: -18
Episode: 3020, Score: -17
Episode: 3040, Score: -17
Episode: 3060, Score: -21
Episode: 3080, Score: -15
Episode: 3100, Score: -19
Episode: 3120, Score: -17
Episode: 3140, Score: -17
Episode: 3160, Score: -17
Episode: 3180, Score: -17
Episode: 3200, Score: -17
Episode: 3220, Score: -18
Episode: 3240, Score: -19
Episode: 3260, Score: -19
Episode: 3280, Score: -17
Episode: 3300, Score: -18
Episode: 3320, Score: -17
Episode: 3340, Score: -25
Episode: 3360, Score: -18
Episode: 3380, Score: -17
Episode: 3400, Score: -19
Episode: 3420, Score: -17
Episode: 3440, Score: -15
Episode: 3460, Score: -118
Episode: 3480, Score: -17
Episode: 3500, Score: -15
Episode: 3520, Score: -17
Episode: 3540, Score: -19
Episode: 3560, Score: -21
Episode: 3580, Score: -17
Episode: 3600, Score: -17
Episode: 3620, Score: -17
Episode: 3640, Score: -19
Episode: 3660, Score: -15
Episode: 3680, Score: -15
Episode: 3700, Score: -100
Episode: 3720, Score: -17
Episode: 3740, Score: -17
Episode: 3760, Score: -100
Episode: 3780, Score: -100
Episode: 3800, Score: -17
Episode: 3820, Score: -18
Episode: 3840, Score: -19
Episode: 3860, Score: -17
Episode: 3880, Score: -19
Episode: 3900, Score: -19
Episode: 3920, Score: -19
Episode: 3940, Score: -18
Episode: 3960, Score: -18
Episode: 3980, Score: -15
Episode: 4000, Score: -19
Episode: 4020, Score: -17
Episode: 4040, Score: -20
Episode: 4060, Score: -19
Episode: 4080, Score: -17
Episode: 4100, Score: -19
Episode: 4120, Score: -15
Episode: 4140, Score: -22
Episode: 4160, Score: -17
Episode: 4180, Score: -22
Episode: 4200, Score: -18
Episode: 4220, Score: -18
Episode: 4240, Score: -19
Episode: 4260, Score: -100
Episode: 4280, Score: -17
Episode: 4300, Score: -19
Episode: 4320, Score: -17
Episode: 4340, Score: -19
Episode: 4360, Score: -21
Episode: 4380, Score: -22
Episode: 4400, Score: -21
Episode: 4420, Score: -18
Episode: 4440, Score: -22
Episode: 4460, Score: -17
Episode: 4480, Score: -20
Episode: 4500, Score: -17
Episode: 4520, Score: -17
Episode: 4540, Score: -17
Episode: 4560, Score: -19
Episode: 4580, Score: -17
Episode: 4600, Score: -19
Episode: 4620, Score: -24
Episode: 4640, Score: -18
Episode: 4660, Score: -17
Episode: 4680, Score: -17
Episode: 4700, Score: -19
Episode: 4720, Score: -15
Episode: 4740, Score: -17
Episode: 4760, Score: -19
Episode: 4780, Score: -17
Episode: 4800, Score: -19
Episode: 4820, Score: -19
Episode: 4840, Score: -21
Episode: 4860, Score: -19
Episode: 4880, Score: -18
Episode: 4900, Score: -17
Episode: 4920, Score: -20
Episode: 4940, Score: -17
Episode: 4960, Score: -17
Episode: 4980, Score: -17
相关文章:
Model-Free TD Control: Sarsa
import time import random # 相对于Q 效果会差一些 class Env():def __init__(self, length, height):# define the height and length of the mapself.length lengthself.height height# define the agents start positionself.x 0self.y 0def render(self, frames50):fo…...
CloudBase CMS的开发注意事项
引言 在进行基于云开发的微信小程序开发时为了减轻工作量打算用CloudBase CMS来减轻工作量,随后去了解并体验了CloudBase CMS的使用,总体来说还有些许问题没有解决,对减轻后台管理工作并没有起到很大的作用。 项目情景 使用CloudBase CMS来管…...
大佬联合署名!反对 ACL 设置匿名期!
夕小瑶科技说 原创 作者 | 智商掉了一地、Python 近日,自然语言处理领域的多位知名学者联合发起了一项反对 ACL 设置匿名期的联合署名行动,包括著名学者 William Wang 和 Yoav Goldberg 在内,还有Christopher Potts、Hal Daume、Luke Zettl…...
【JavaSE】Java基础语法(十四):Static
文章目录 概述特点与应用注意事项为什么一个静态方法中只能访问用static修饰的成员? 概述 Java中的static是一个修饰符(也可称关键字),可以用于修饰变量、方法和代码块。 特点与应用 static修饰的成员具有以下特点: 被类的所有对…...
1.Linux初识
在 Linux 系统中,sudo 是一个重要的命令,可以允许普通用户以管理员权限来运行特定的命令。通过 sudo 命令,普通用户可以暂时获取管理员权限,执行需要管理员身份才能执行的操作。 下面是一些关于 sudo 命令的用法: 以管…...
进程(二)
这一节我们写个MFC剪切板程序 1.下载相应的组件 工具->工具视图,因为之前已经下载过一部分了,这里如果创建MFC报错的话,就要把没下载的补上 此项目需要MFC库 解决方法 2.创建MFC程序 3.打开资源视图,直接在菜单栏顶部搜索…...
《消息队列高手课》课程笔记(二)
消息模型:主题和队列有什么区别? 两类消息模型 早期的消息队列,就是按照“队列”的数据结构来设计的。 生产者(Producer)发消息就是入队操作,消费者(Consumer)收消息就是出队也就是…...
以“智”提质丨信创呼叫
随着人工智能、大数据、云计算等新兴技术飞速发展,呼叫中心、全媒体智能客服等现已被广泛应用于多个行业领域。其中,呼叫中心作为政企对外服务的重要窗口,已从“传统电话营销”发展到“智能呼叫中心”阶段,以客户服务为核心&#…...
Pool与PG的说明以及Ceph的IO流程
Pool与PG的说明以及Ceph的IO流程 Pool与PG Ceph中的数据是以对象的形式存储在存储池(pool)中的。每个存储池都被划分为若干个存储组(PG),每个存储组同时也是一个数据分片(shard)。存储组是Ceph用来实现数据的分布式存储和高可用的重要组成部分。每个存储组包含若干…...
20230529_Hadoop_集群操作命令
HDFS_集群操作命令: 一、集群启停命令 # 启动Hadoop的HDFS进程start-dfs.sh# 关闭Hadoop的HDFS进程stop-dfs.sh# 单独关闭某一个进程hadoop-daemon.sh start[/stop] namenode[/datanode/secondarynamenode]二、HDFS文件系统的基本信息 数据的路径表达方式ÿ…...
边缘计算AI硬件智能分析网关V1版的接入流程与使用步骤
我们的AI边缘计算网关硬件——智能分析网关目前有两个版本:V1版与V2版,两个版本都能实现对监控视频的智能识别和分析,支持抓拍、记录、告警等,在AI算法的种类上和视频接入上,两个版本存在些许的区别。V1的基础算法有人…...
【redis】Stream、String 超详细介绍
文章目录 一、Stream1.1 写入数据XADD条目 ID 的格式 1.2 获取数据XRANGE 和 XREVRANGEXREAD 监听新条目非阻塞形式阻塞形式 1.3 消费者组XGROUP 创建消费者组XREADGROUP 通过消费者组消费XACK 确认消息消费者组示例 1.4 XPENDING 和 XCLAIM 认领 其他消费者 的待处理消息XPEND…...
算法基础学习笔记——⑫最小生成树\二分图\质数\约数
✨博主:命运之光 ✨专栏:算法基础学习 目录 ✨最小生成树 🍓朴素Prim 🍓Kruskal算法 ✨二分图 🍓匈牙利算法 ✨质数 🍓(1)质数的判定——试除法 🍓(2&…...
了解信号的传输方式、编码与调制、信道的极限容量
1.了解信号的传输方式、编码与调制、信道的极限容量 笔记来源: 湖科大教书匠:传输方式 声明:该学习笔记来自湖科大教书匠,笔记仅做学习参考 1.1 了解信号的传输方式 串行传输与并行传输 同步传输与异步传输 为什么需要收发双发…...
SpringBoot自动配置原理总结
1、我们需要从主启动类的SpringBootApplication注解开始分析: SpringBootApplication是一个复合注解,进入以后看到主要包括以下三个注解: SpringBootConfiguration EnableAutoConfiguration ComponentScan(excludeFilters { Filter(type …...
【LeetCode: 410. 分割数组的最大值 | 暴力递归=>记忆化搜索=>动态规划 】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
内核对象和两种同步
概念 Windows 中每个内核对象都只是一个内存块,它由操作系统内核分配,并只能由操作系统内核进 行访问 它的所有者:内核对象的所有者是操作系统内核,而非进程,也就是说当进程退出,内核对象不一定会销毁 法…...
水表远程监控系统有什么功能吗?
水表远程监控系统是通过远程传输水表数据,实现对水表的远程监控和管理的一种智能化系统。它主要具备以下功能: 1.远程抄表功能:通过远程传输技术,实现对水表的远程抄表和监控,无需人工上门抄表,节省人力成本…...
zabbix自定义监控
一、案例操作:自定义监控内容 案列:自定义监控客户端服务器登录的人数 需求:限制登录人数不超过 3 个,超过 3 个就发出报警信息 1、自定义监控内容的操作步骤 1.1 在客户端创建自定义 key 明确需要执行的 linux 命令 who | …...
【AUTOSAR】Com通讯栈配置说明(四)---- Nm模块
Nm模块 NmGlobalConfig NmGlobalConstants NmRxIndicationCallback: callback 函数 NmCycletimeMainFunction:Nm 主函数调用周期 NmDevErrorDetect: 是否支持DET NmVersionInfoApi: 是否支持获取版本信息api PduR模块 PduRBswModules PduRBswModuleRef:关联的BS…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
