当前位置: 首页 > news >正文

分布式id解决方法--雪花算法

uuid,jdk自带,但是数据库性能差,32位呀。
mysql数据库主键越短越好,B+tree产生节点分裂,大大降低数据库性能,所以uuid不建议。

redis的自增,但是要配置维护redis集群,就为了一个id,还要引入一套redis。费事,成本高。
如果有序自增别人就知道你的业务量多少了。

雪花算法

分布式自增id算法snowflake,京东还有好多大厂使用这个。
经测试每秒能产生26w个自增可以排序的id
1.生成id能按照时间有序生成
2.生成id结果是一个64bit大小的整数,为一个Long型(转换成字符串长度最多19)
3.分布式系统内不会产生id碰撞(由datacenter和worderId作区分)并且效率高。

雪花算法几个核心组成部分

在这里插入图片描述
在这里插入图片描述

1bit,符号位,不用,因为二进制中最高位是符号位,1表示负,0表示正。生成的id是正数,所以是0.
5位机房id,5位机器id

在这里插入图片描述
一毫秒内只能生成4095,如果超过只能到下一秒了,需要获取下一个时间戳

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了。
接下来 41 位存储毫秒级时间戳,2^41/(1000606024365)=69,大概可以使用 69 年。
再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。
最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

如何使用,整合springboot即可
hutool工具包

雪花算法源码

判断是否时钟回拨,回拨抛异常不做处理
在这里插入图片描述
在这里插入图片描述
如果是这个时间第一次,sequence=0,如果同一个时间有其他进入,则(sequence+1)& sequenceMask计算,这个计算就是和12个1做与运算,当你小于4095时后,还是你自己,当大于的时候,比方是4096,计算后就是0,如果并发特别高,1毫秒产生的大于4096,阻塞到下一毫秒。通过while循环等一下,等到下一毫秒,然后变成下一个时间段了。

真正自己代码会减掉一个自己的系统初始时间,可以让我们时间更长
在这里插入图片描述
通过zookeeper生成机器id
在这里插入图片描述
雪花服务注册到nacos注册中心

时钟回拨问题

雪花算法源码里面通过判断时间大小来判断是否发生时间回拨,如果发生,抛异常,拒绝生成。这里没有做任何时钟回拨处理,所以线上机器不要动。

如何处理时钟回拨问题呢?

雪花算法源码没有解决,真的线上不能使用,需要修改。才能达到高并发,高可用,高可扩展。

第一种解决方法,我们可以加个容忍时间,设置3ms,如果发生时钟回拨,我们用LockSupport锁来睡一下,睡上最大容忍时间3ms,然后再去看一下有没有时钟回拨问题。如果还是有问题呢?我们要通过人为干预解决了

第二种解决方法,雪花算法10位机器是可以控制的,我们用备用机解决,

回拨时间长短,如果短,等待一会儿。
如果时间适中,可以将最近的数据时间段,每一毫秒的maxId数据保存起来,在他最后面开始++。
如果时间再长,雪花算法10位机器是可以控制的,我们用备用机解决,重试其他机器,换一台机器。下次再走到,已经过了时间,没有回拨问题了。
如果时间更长,机器下线,不能用了,人为解决吧。调用nacos服务下限api,将这台机器直接下线。同步发送短信告知运维。

百度开源的 UidGenerator 是基于Java语言实现的唯一ID生成器,是在雪花算法 snowflake 的基础上做了一些改进(解决了时钟回拨问题)。

美团,Leaf

基于雪花算法进行修改封装。

工作进程怎么办,1024台怎么维护
分布式主键中间件获取id,由他区分工作进程,用美团的Leaf服务,Leaf也是高可用,负载均衡
保证leaf也是不同id,0-1023,zookeeper有序节点,启动leaf,一直能扩展到1023.

Leaf需要依赖zookeeper顺序节点,通过RPC去Leaf中获取id

还有就是解决时钟回拨问题

Leaf-snowflake 方案

Leaf-segment 方案可以生成趋势递增的 ID,同时 ID 号是可计算的,不适用于订单 ID 生成场景,比如竞对在两天中午 12 点分别下单,通过订单 id 号相减就能大致计算出公司一天的订单量,这个是不能忍受的。面对这一问题,我们提供了 Leaf-snowflake 方案。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

Leaf-snowflake 方案完全沿用 snowflake 方案的 bit 位设计,即是 “1+41+10+12” 的方式组装 ID 号。对于 workerID 的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf 服务规模较大,动手配置成本太高。所以使用 Zookeeper 持久顺序节点的特性自动对 snowflake 节点配置 wokerID。Leaf-snowflake 是按照下面几个步骤启动的:

启动 Leaf-snowflake 服务,连接 Zookeeper,在 leaf_forever 父节点下检查自己是否已经注册过(是否有该顺序子节点)。

如果有注册过直接取回自己的 workerID(zk 顺序节点生成的 int 类型 ID 号),启动服务。

如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的 workerID 号,启动服务。

image

弱依赖 ZooKeeper
除了每次会去 ZK 拿数据以外,也会在本机文件系统上缓存一个 workerID 文件。当 ZooKeeper 出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了 SLA

启动Leaf-snowflake模式也比较简单,启动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=false
leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181

注意:在启动项目之前,请保证已经正常启动zookeeper

解决时钟问题

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的 ID 号,需要解决时钟回退的问题。

image

参见上图整个启动流程图,服务启动时首先检查自己是否写过 ZooKeeper leaf_forever 节点:

若写过,则用自身系统时间与 leaf_forever/ s e l f 节点记录时间做比较,若小于 l e a f f o r e v e r / {self} 节点记录时间做比较,若小于 leaf_forever/ self节点记录时间做比较,若小于leafforever/{self} 时间则认为机器时间发生了大步长回拨,服务启动失败并报警。

若未写过,证明是新服务节点,直接创建持久节点 leaf_forever/${self} 并写入自身系统时间,接下来综合对比其余 Leaf 节点的系统时间来判断自身系统时间是否准确,具体做法是取 leaf_temporary 下的所有临时节点 (所有运行中的 Leaf-snowflake 节点) 的服务 IP:Port,然后通过 RPC 请求得到所有节点的系统时间,计算 sum (time)/nodeSize。

若 abs (系统时间 - sum (time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点 leaf_temporary/${self} 维持租约。

否则认为本机系统时间发生大步长偏移,启动失败并报警。

每隔一段时间 (3s) 上报自身系统时间写入 leaf_forever/${self}。

由于强依赖时钟,对时间的要求比较敏感,在机器工作时 NTP 同步也会造成秒级别的回退,建议可以直接关闭 NTP 同步。要么在时钟回拨的时候直接不提供服务直接返回 ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警,如下:

//发生了回拨,此刻时间小于上次发号时间

  if (timestamp < lastTimestamp) {            long offset = lastTimestamp - timestamp;            if (offset <= 5) {               try {                    //时间偏差大小小于5ms,则等待两倍时间wait(offset << 1);//waittimestamp = timeGen();                   if (timestamp < lastTimestamp) {                       //还是小于,抛异常并上报throwClockBackwardsEx(timestamp);}    } catch (InterruptedException e) {  throw  e;}} else {                //throwthrowClockBackwardsEx(timestamp);}} //分配ID

从上线情况来看,在 2017 年闰秒出现那一次出现过部分机器回拨,由于 Leaf-snowflake 的策略保证,成功避免了对业务造成的影响。

相关文章:

分布式id解决方法--雪花算法

uuid&#xff0c;jdk自带&#xff0c;但是数据库性能差&#xff0c;32位呀。 mysql数据库主键越短越好&#xff0c;Btree产生节点分裂&#xff0c;大大降低数据库性能&#xff0c;所以uuid不建议。 redis的自增&#xff0c;但是要配置维护redis集群&#xff0c;就为了一个id&a…...

5年经验之谈:月薪3000到30000,测试工程师的变“行”记

自我介绍下&#xff0c;我是一名转IT测试人&#xff0c;我的专业是化学&#xff0c;去化工厂实习才发现这专业的坑人之处&#xff0c;化学试剂害人不浅&#xff0c;有毒&#xff0c;易燃易爆&#xff0c;实验室经常用丙酮&#xff0c;甲醇&#xff0c;四氯化碳&#xff0c;接触…...

PMP考试都是什么题?

PMP新版大纲加入了ACP敏捷管理的内容&#xff0c;说是敏捷混合题型占到了 50%&#xff0c;但是这次318的考试&#xff0c;敏捷题占了大半&#xff0c;都说敏捷和情景快要占到80%-90%。 所以有友友说开了四个小时盲盒&#xff0c;题目读不懂&#xff0c;或者觉得4个选项都不对或…...

macbook2023系统清理软件cleanmymac中文版

cleanmymac x 中文版基本都是大家首选Mac清理软件了。它集各种功能于一身&#xff0c;几乎满足用户所有的清理需求。它可以清理&#xff0c;优化&#xff0c;保养和监测您的电脑&#xff0c;确保您的Mac运行畅通无阻&#xff01;支持一键快速清理Mac&#xff0c;快速检查并安全…...

基于Python+AIML+Tornado的智能聊天机器人(NLP+深度学习)含全部工程源码+语料库 适合个人二次开发

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境Tornado 环境 模块实现1. 前端2. 后端3. 语料库4. 系统测试 其它资料下载 前言 本项目旨在利用AIML技术构建一个聊天机器人&#xff0c;实现用户通过聊天界面与机器人交互的功能。通过提供的工程源代码&#xf…...

算法Day15 | 层序遍历,102,107,199,637,429,515,116,117,104,111,226,101

Day15 层序遍历102.二叉树的层序遍历107.二叉树的层次遍历 II199.二叉树的右视图637.二叉树的层平均值429.N叉树的层序遍历515.在每个树行中找最大值116.填充每个节点的下一个右侧节点指针117.填充每个节点的下一个右侧节点指针II104.二叉树的最大深度111.二叉树的最小深度 226…...

Prometheus+Grafana学习(十一)安装使用pushgateway

Pushgateway允许短暂和批量作业将其指标暴露给 Prometheus。由于这些工作的生命周期可能不足够长&#xff0c;不能够存在足够的时间以让 Prometheus 抓取它们的指标。Pushgateway 允许它们可以将其指标推送到 Pushgateway&#xff0c;然后 Pushgateway 再将这些指标暴露给 Prom…...

深入理解C/C++预处理器指令#pragma once以及与ifndef的比较

#pragma once用法总结 为了防止重复引用造成二义性 在C/C中&#xff0c;在使用预编译指令#include的时候&#xff0c;为了防止重复引用造成二义性&#xff0c;通常有两种方式 第一种是#ifndef指令防止代码块重复引用&#xff0c;比如说 #ifndef _CODE_BLOCK #define _CODE_BLO…...

git 环境配置 + gitee拉取代码

好嘛 配环境的时候 老是忘记这个命令行 干脆自己写一个记录一下 也不用搜了 1.先从git官网下载git 安装 2.然后从gitee拉取代码的时候提示 这是因为换了新电脑没有加入新的公钥啦 哎 所以老是记不住命令行 first &#xff1a; git config --global user.name “Your Name” …...

港联证券|港股拥抱特专科技企业 内资券商“修炼内功”蓄势而为

港股市场新一轮改革举措渐次落地。特别是港交所推出特专科技公司上市机制&#xff0c;吸引符合资格的科技企业申请赴港上市&#xff0c;成为这一轮港股市场改革的“重头戏”。 作为香港资本市场的重要参与者&#xff0c;内资券商立足香港、背靠内地、辐射全球&#xff0c;走出一…...

多项创新技术加持,实现零COGS的Microsoft Editor语法检查器

编者按&#xff1a;Microsoft Editor 是一款人工智能写作辅助工具&#xff0c;其中的语法检查器&#xff08;grammar checker&#xff09;功能不仅可以帮助不同水平、领域的用户在写作过程中检查语法错误&#xff0c;还可以对错误进行解释并给出正确的修改建议。神经语法检查器…...

Python编程环境搭建:Windows中如何安装Python

在 Windows 上安装 Python 和安装普通软件一样简单&#xff0c;下载安装包以后猛击“下一步”即可。 Python 安装包下载地址&#xff1a;https://www.python.org/downloads/ 打开该链接&#xff0c;可以看到有两个版本的 Python&#xff0c;分别是 Python 3.x 和 Python 2.x&…...

Sui Builder House首尔站倒计时!

Sui主网上线后的第一场Builder House活动即将在韩国首尔举行&#xff0c;同期将举办首场线下面对面的黑客松。活动历时两天&#xff0c;将为与会者提供独特的学习、交流和娱乐的机会。活动详情请查看&#xff1a;Sui Builder House首尔站&#xff5c;主网上线后首次亮相。 Sui…...

Java设计模式-状态模式

简介 在软件开发领域&#xff0c;设计模式是一组经过验证的、被广泛接受的解决问题的方案。其中之一是状态模式&#xff0c;它提供了一种优雅的方式来管理对象的不同状态。 状态模式是一种行为型设计模式&#xff0c;它允许对象在内部状态发生改变时改变其行为。状态模式将对…...

智慧社区用什么技术开发

智慧社区是指利用信息技术和先进的管理理念&#xff0c;将社区内的各种公共服务进行整合和优化&#xff0c;提高社区居民的生活品质和社区管理的效率。为了实现智慧社区的建设&#xff0c;需要采用多种技术&#xff0c;包括但不限于以下几种&#xff1a; 1.物联网技术&#xf…...

多线程 线程池饱和策略

RejectedExecutionHandler&#xff08;饱和策略&#xff09;&#xff1a;当队列和线程池都满了&#xff0c;说明线程池处于饱和状态&#xff0c;那么必须采取一种策略处理提交的新任务。 这个策略默认情况下是AbortPolicy&#xff0c;表示无法处理新任务时抛出异常。 在JDK 1…...

进程间通信之信号

进程间通信之信号 1. 信号2. 信号由谁产生?3. 有哪些信号4. 信号的安装5. 信号的发送1) 使用kill函数2)使用alarm函数3) 使用raise6.发送多个信号7. 信号集1. 信号 什么是信号? 信号是给程序提供一种可以处理异步事件的方法,它利用软件中断来实现。不能自定义信号,所有信号…...

二分查找三道题

二分查找 两种写法&#xff1a;左闭右闭[left,right]、左闭右开[left,right) 主要有几点不同&#xff1a;1. right是从num.length开始还是从num.length-1开始。2.left<还是<right。3.rightmid还是mid1 左闭右闭写法&#xff1a; public int search(int[] nums, int targ…...

MyBatis 框架

MyBatis 框架 MyBatis 简介搭建 MyBatis 开发环境核心配置文件详解mapper 映射文件&#xff08;实现增删改查&#xff09;MyBatis获取参数值的两种方式MyBatis的各种查询功能特殊SQL的执行自定义映射resultMapresultMap 字段和属性的映射多对一映射处理一对多映射处理 动态SQLM…...

【C++】虚表和虚基表到底有哪些区别?

虚表和虚基表 虚表虚基表虚拟继承和虚函数都存在时的对象模型 虚表 我们知道&#xff0c;如果类中声明了的方法是用virtual进行修饰的&#xff0c;则说明当前这个方法要作为虚函数&#xff0c;而虚函数的存储和普通函数的存储是有区别的 当有虚函数声明时&#xff0c;编译器会…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...

可视化预警系统:如何实现生产风险的实时监控?

在生产环境中&#xff0c;风险无处不在&#xff0c;而传统的监控方式往往只能事后补救&#xff0c;难以做到提前预警。但如今&#xff0c;可视化预警系统正在改变这一切&#xff01;它能够实时收集和分析生产数据&#xff0c;通过直观的图表和警报&#xff0c;让管理者第一时间…...