当前位置: 首页 > news >正文

在树莓派3B+上安装Pytorch1.7

在树莓派3B+上安装Pytorch1.7(应该是最简单的方法了)_package 'libopenblas-dev' has no installation cand_Chauncey_Wang的博客-CSDN博客由于项目要求,我需要在树莓派上安装pytorch这就有几个问题,首先吧,咱们和外面之间有一道长城,这使得咱们用git clone的时候非常不稳定,经常出现克隆失败,无法克隆的情况其次吧,树莓派编译pytorch的时候非常慢。。。不过好我找到了别人编译好的whl文件,这使得我安装pytorch1.7的时候变得非常容易whl文件来自于树莓派上编译安装pytorch1.7与torchvision0.8你也可以直接在这里下载(提取码:036n)先介绍一下我的系统,就是官方给的最...https://blog.csdn.net/weixin_39518984/article/details/115430790


树莓派上编译安装pytorch1.7与torchvision0.8_m0_46295742的博客-CSDN博客树莓派上编译安装pytorch1.7与torchvision0.8因为pytorch没有官方的arm版提供给树莓派下载,所以我们需要在树莓派上自己进行编译编译环境:python3.7文章目录树莓派上编译安装pytorch1.7与torchvision0.8前言1.系统环境1)安装树莓派版的cond2)安装编译pytorch时需要的包2.编译pytorch1.73.编译安装torchvision0.8安装编译所需要的包安装pillow编译 torchvision总结前言本文主要转载另一博主的文https://blog.csdn.net/m0_46295742/article/details/113181193

树莓派4B(armv7l,arm32)buster安装PyTorch、torchvision、torchaudio、onnxruntime_树莓派安装torch_DEDSEC_Roger的博客-CSDN博客在树莓派4B 32位buster 上安装PyTorch及其小伙伴,以及onnxruntime,需要先安装依赖,然后安装在对应系统架构下(准确来说是linux_armv7l架构)编译得到的wheel文件对于linux_armv7l,我只找到最高0.7.2的torchaudio和最高1.8.1的onnxruntime,据说0.8.x及之后的torchaudio无法在linux_armv7l上编译0.7.x的torchaudio。https://blog.csdn.net/m0_46324847/article/details/128891706 

相关文章:

在树莓派3B+上安装Pytorch1.7

在树莓派3B上安装Pytorch1.7(应该是最简单的方法了)_package libopenblas-dev has no installation cand_Chauncey_Wang的博客-CSDN博客由于项目要求,我需要在树莓派上安装pytorch这就有几个问题,首先吧,咱们和外面之间有一道长城&#xff0c…...

Java性能权威指南-总结4

Java性能权威指南-总结4 Java性能调优工具箱操作系统的工具和分析CPU运行队列磁盘使用率网络使用率 Java监控工具基本的VM信息 Java性能调优工具箱 操作系统的工具和分析 CPU运行队列 快速小结 检查应用性能时,首先应该审查CPU时间。优化代码的目的是提升而不是…...

c语言全局变量和局部变量问题汇总

✅作者简介:嵌入式领域优质创作者,博客专家 ✨个人主页:咸鱼弟 🔥系列专栏:单片机设计专栏 📃推荐一款求职面试、刷题神器👉注册免费刷题 1、关键字static的作用是什么? 定义静态变…...

14.3:给定一个由字符串组成的数组strs,必须把所有的字符串拼接起来,返回所有可能的拼接结果中字典序最小的结果

给定一个由字符串组成的数组strs,必须把所有的字符串拼接起来,返回所有可能的拼接结果中字典序最小的结果 贪心写法 首先注意的一点是:如果两个字符串的长度相同,“abc”,“abd”,肯定是“abc”的字典序最…...

C++ 项目实战:跨平台的文件与视频压缩解压工具的设计与实现

C实战:跨平台文件与视频压缩解压工具的设计与实现 一、引言(Introduction)1.1 项目背景与目标1.2 技术选型:C、FFmpeg、libarchive、libzip、QtCFFmpeglibarchivelibzipQt 二、设计思路与框架(Design Philosophy and F…...

C和指针(二)数据

数据类型 1,C语言中仅有四种基本数据类型——整型、浮点型、指针、聚合类型(数组、结构等)。 2,整型包括字符、短整型、整型、长整型,且可以分为有符号和无符号两种版本。 1)长整型至少和整型一样长&#…...

PyTorch基础学习(一)

一.简介 PyTorch是一个基于Python的开源机器学习框架,它提供了丰富的工具和接口,用于构建和训练深度学习模型。PyTorch的主要特点包括: 动态计算图: PyTorch使用动态计算图,这意味着在模型构建过程中可以实时地进行计…...

chatgpt赋能python:Python代做:让您的网站更友好的SEO利器

Python代做:让您的网站更友好的SEO利器 如果您是一位网站管理员或者SEO工程师,您一定知道SEO对于网站的重要性。那么在SEO中,Python代做可以为您提供什么?在本文中,我们将通过介绍Python代做的技术和方法,…...

2022年都快结束了,还有人不会安卓录屏?在安卓上录制屏幕的的实现方式

前言 在我之前的文章 《以不同的形式在安卓中创建GIF动图》 中,我挖了一个坑,可以通过录制屏幕后转为 GIF 的方式来创建 GIF。只是当时我只是提了这么一个思路,并没有给出录屏的方式,所以本文的内容就是教大家如何通过调用系统 A…...

px rem em rpx 区别 用法

任意浏览器的默认字体高都是16px。所有未经调整的浏览器都符合: 1em16px。那么12px0.75em,10px0.625em。为了简化font-size的换算,需要在css中的body选择器中声明Font-size62.5%,这就使em值变为 16px*62.5%10px, 这样12px1.2em, 10px1em, 也就是说只需要…...

忆享聚焦|ChatGPT、AI、网络数字、游戏……近期热点资讯一览

“忆享聚焦”栏目第十四期来啦!本栏目汇集近期互联网最新资讯,聚焦前沿科技,关注行业发展动态,筛选高质量讯息,拓宽用户视野,让您以最低的时间成本获取最有价值的行业资讯。 目录 行业资讯 1.科技部部长王志…...

[Daimayuan] 树(C++,动态规划,01背包方案数)

有一棵 n n n 个节点的以 1 1 1 号点为根的有根树。现在可以对这棵树进行若干次操作,每一次操作可以选择树上的一个点然后删掉连接这个点和它的儿子的所有边。 现在我们想知道对于每一个 k k k ( 1 ≤ k ≤ n 1≤k≤n 1≤k≤n),最少需要多少次操作能…...

如何选择源代码加密软件

(SDC沙盒)和DLP、文档加密、云桌面等,其优缺点做客观比较如下: 比较内容安全容器(SDC沙盒)DLP文档加密云桌面代表厂家*信达卖咖啡、赛门贴科亿*通、IP噶德、*盾、*途四杰、深*服设计理念以隔离容器加准入技术为基础,构…...

TO-B类软件产品差异化

产品差异化,是在市场众多同质化产品中,突出自身产品亮点的重要方式。对于客户来讲其选择是多种多样的,与其花费大量的时间研究每一家产品的特点,还不如直接选择品牌更大、价格更低的产品来的直接,因此显而易见的突出产…...

设计模式之美-实战一(上):业务开发常用的基于贫血模型的MVC架构违背OOP吗?

领域驱动设计(Domain Driven Design,简称DDD)盛行之后,这种基于贫血模型的传统的开发模式就更加被人诟病。而基于充血模型的DDD开发模式越来越被人提倡。所以,我打算用两节课的时间,结合一个虚拟钱包系统的…...

ChatGPT如何训练自己的模型

ChatGPT是一种自然语言处理模型,它的任务是生成自然流畅的对话。如果想要训练自己的ChatGPT模型,需要进行大量的数据收集、预处理、配置训练环境、模型训练、模型评估等过程。本文将详细介绍这些过程,帮助读者了解如何训练一个高品质的ChatGP…...

springboot使用线程池的实际应用(一)

在实际Spring Boot项目中,我们可以使用Java的原生多线程或者使用Spring自带的线程池进行多线程编程。多线程的好处在于能够提高应用程序的运行效率,特别是在某些计算密集型场景下。以下是一些使用多线程的典型场景: 并发处理请求&#xff1a…...

ESP-8266学习笔记

1、学习地址 【XMF09F系列资源】基于MicroPython的ESP8266物联网应用开发-赛教资源目录汇总-小蜜蜂笔记 Quick reference for the ESP8266 — MicroPython latest documentation 2、MicroPython及相关开发资源 3、固件烧录与uPyLoader的使用 烧录教程参考: https://www.…...

Java泛型简单的使用

前言 Java里面的泛型在实际开发中运用的很多,学过C的同学一定知道C的模板,而Java中的泛型,一定程度上和它还是挺像的。 相信写Java的人,大都有用过List的实现类ArrayList。在Java没有泛型之前,它的内部是一个Object的…...

深度探索:Qt CMake工程编译后的自动打包策略

深度探索:Qt CMake工程编译后的自动打包策略 1. 引言(Introduction)1.1 Qt和CMake的基本概念(Basic Concepts of Qt and CMake)1.2 自动打包的重要性(Importance of Automatic Packaging) 2. Qt…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...