OpenAI目前所有模型介绍
目录
概述
GPT-4 (limted beta)
GPT-3.5
GPT-3
各类模型介绍
DALL·E Beta
Whisper Beta
Embeddings
Moderation
Codex (deprecated)
概述
模型 | 描述 |
---|---|
GPT-4 Limited beta | 一组在 GPT-3.5 上改进的模型,可以理解并生成自然语言或代码 |
GPT-3.5 | 一组在 GPT-3 上改进的模型,可以理解并生成自然语言或代码 |
DALL·E Beta | 可以在给定自然语言提示的情况下生成和编辑图像的模型 |
Whisper Beta | 一种可以将音频转换为文本的模型 |
Embeddings | 一组可以将文本转换为数字形式的模型 |
Moderation | 可以检测文本是否敏感或不安全的微调模型 |
GPT-3 | 一组可以理解和生成自然语言的模型 |
Codex Deprecated | 一组可以理解和生成代码的模型,包括将自然语言翻译成代码 |
GPT-4 (limted beta)
GPT-4 是一个大型多模态模型(今天接受文本输入并发出文本输出,将来会出现图像输入),由于其更广泛的常识和高级推理,它可以比我们以前的任何模型更准确地解决难题能力。 与 gpt-3.5-turbo 一样,GPT-4 针对聊天进行了优化,但也适用于使用 Chat Completions API 的传统完成任务。
最新的模型 | 描述 | 最大的 TOKENS | 训练数据日期 |
---|---|---|---|
gpt-4 | 比任何 GPT-3.5 模型都更强大,能够执行更复杂的任务,并针对聊天进行了优化。 将使用我们最新的模型迭代进行更新。 | 8,192 tokens | Up to Sep 2021 |
gpt-4-0314 | 2023 年 3 月 14 日的 gpt-4 快照。与 gpt-4 不同,此模型不会收到更新,并且会在新版本发布 3 个月后弃用。 | 8,192 tokens | Up to Sep 2021 |
gpt-4-32k | 与基本 gpt-4 模式相同的功能,但上下文长度是其 4 倍。 将使用我们最新的模型迭代进行更新。 | 32,768 tokens | Up to Sep 2021 |
gpt-4-32k-0314 | 2023 年 3 月 14 日的 gpt-4-32 快照。与 gpt-4-32k 不同,此模型不会收到更新,并将在新版本发布 3 个月后弃用。 | 32,768 tokens | Up to Sep 2021 |
对于许多基本任务,GPT-4 和 GPT-3.5 模型之间的差异并不显着。 然而,在更复杂的推理情况下,GPT-4 比我们之前的任何模型都更有能力。
GPT-3.5
GPT-3.5 模型可以理解并生成自然语言或代码。 我们在 GPT-3.5 系列中功能最强大且最具成本效益的模型是 gpt-3.5-turbo,它已针对聊天进行了优化,但也适用于传统的完成任务。
最新的模型 | 描述 | 最大的 TOKENS | 训练数据日期 |
---|---|---|---|
gpt-3.5-turbo | 功能最强大的 GPT-3.5 模型并针对聊天进行了优化,成本仅为 text-davinci-003 的 1/10。 将使用我们最新的模型迭代进行更新。 | 4,096 tokens | Up to Sep 2021 |
gpt-3.5-turbo-0301 | 2023 年 3 月 1 日的 gpt-3.5-turbo 快照。与 gpt-3.5-turbo 不同,此模型不会收到更新,并将在新版本发布 3 个月后弃用。 | 4,096 tokens | Up to Sep 2021 |
text-davinci-003 | 可以以比居里、巴贝奇或 ada 模型更好的质量、更长的输出和一致的指令遵循来完成任何语言任务。 还支持在文本中插入补全。 的 | 4,097 tokens | Up to Jun 2021 |
text-davinci-002 | 与 text-davinci-003 类似的功能,但使用监督微调而不是强化学习进行训练 | 4,097 tokens | Up to Jun 2021 |
code-davinci-002 | 针对代码完成任务进行了优化 | 8,001 tokens | Up to Jun 2021 |
我们建议使用 gpt-3.5-turbo 而不是其他 GPT-3.5 模型,因为它的成本更低。
GPT-3
GPT-3 模型可以理解和生成自然语言。 这些模型被更强大的 GPT-3.5 代模型所取代。 然而,最初的 GPT-3 基础模型(davinci、curie、ada 和 babbage)是目前唯一可用于微调的模型。
最新的模型 | 描述 | 最大的 TOKENS | 训练数据日期 |
---|---|---|---|
text-curie-001 | 非常有能力,比Davinci更快,成本更低。 | 2,049 tokens | Up to Oct 2019 |
text-babbage-001 | 能够执行简单的任务,速度非常快,成本更低。 | 2,049 tokens | Up to Oct 2019 |
text-ada-001 | 能够执行非常简单的任务,通常是 GPT-3 系列中最快的型号,而且成本最低。 | 2,049 tokens | Up to Oct 2019 |
davinci | 功能最强大的 GPT-3 模型。 可以完成其他模型可以完成的任何任务,而且通常质量更高。 | 2,049 tokens | Up to Oct 2019 |
curie | 非常有能力,但比Davinci更快,成本更低。 | 2,049 tokens | Up to Oct 2019 |
babbage | 能够执行简单的任务,速度非常快,成本更低。 | 2,049 tokens | Up to Oct 2019 |
ada | 能够执行非常简单的任务,通常是 GPT-3 系列中最快的型号,而且成本最低。 | 2,049 tokens | Up to Oct 2019 |
各类模型介绍
DALL·E Beta
DALL·E 是一个人工智能系统,可以根据自然语言的描述创建逼真的图像和艺术作品。 目前支持在提示的情况下创建具有特定大小的新图像、编辑现有图像或创建用户提供的图像的变体的能力。
通过Open API 提供的当前 DALL·E 模型是 DALL·E 的第 2 次迭代,具有比原始模型更逼真、更准确且分辨率高 4 倍的图像。 您可以通过我们的实验室界面或 API 进行试用。
产生图片的一些官网提供例子
编辑图片的例子
Whisper Beta
Whisper 是一种通用的语音识别模型。 它在不同音频的大型数据集上进行训练,也是一个多任务模型,可以执行多语言语音识别以及语音翻译和语言识别。 Whisper v2-large 模型目前可通过我们的 API 使用 whisper-1 模型名称获得。
目前,Whisper 的开源版本与通过我们的 API 提供的版本之间没有区别。 然而,通过Open API,我们提供了一个优化的推理过程,这使得通过我们的 API 运行 Whisper 比通过其他方式运行要快得多。
Embeddings
嵌入是文本的数字表示,可用于衡量两段文本之间的相关性。 我们的第二代嵌入模型 text-embedding-ada-002 旨在以一小部分成本取代之前的 16 种第一代嵌入模型。 嵌入可用于搜索、聚类、推荐、异常检测和分类任务。
Moderation
审核模型旨在检查内容是否符合 OpenAI 的使用政策。 这些模型提供了查找以下类别内容的分类功能:仇恨、仇恨/威胁、自残、性、性/未成年人、暴力和暴力/图片。
审核模型接受任意大小的输入,该输入会自动分解以修复模型特定的上下文窗口。
MODEL | DESCRIPTION |
---|---|
text-moderation-latest | 最有能力的审核模型。 精度会略高于稳定模型 |
text-moderation-stable |
Codex (deprecated)
Codex 模型现已弃用。 他们是我们 GPT-3 模型的后代,可以理解和生成代码 他们的训练数据包含自然语言和来自 GitHub 的数十亿行公共代码。 了解更多。
他们最擅长 Python,精通 JavaScript、Go、Perl、PHP、Ruby、Swift、TypeScript、SQL,甚至 Shell 等十几种语言。
以下 Codex 模型现已弃用:
最新的模型 | 描述 | 最大的 TOKENS | 训练数据日期 |
---|---|---|---|
code-davinci-002 | 功能最强大的 Codex 型号。 特别擅长将自然语言翻译成代码。 除了补全代码,还支持在代码中插入补全。 的 | 8,001 tokens | Up to Jun 2021 |
code-davinci-001 | ode-davinci-002 的早期版本 | 8,001 tokens | Up to Jun 2021 |
code-cushman-002 | 几乎与 Davinci Codex 一样强大,但速度稍快。 这种速度优势可能使其成为实时应用程序的首选。 | Up to 2,048 tokens | |
code-cushman-001 | code-cushman-002 的早期版本 | Up to 2,048 tokens |
以上所有的内容来自https://platform.openai.com/docs/models
相关文章:

OpenAI目前所有模型介绍
目录 概述 GPT-4 (limted beta) GPT-3.5 GPT-3 各类模型介绍 DALLE Beta Whisper Beta Embeddings Moderation Codex (deprecated) 概述 模型描述GPT-4 Limited beta 一组在 GPT-3.5 上改进的模型,可以理解并生成自然语言或代码GPT-3.5一组在 GPT-3 上改…...

【P43】JMeter 吞吐量控制器(Throughput Controller)
文章目录 一、吞吐量控制器(Throughput Controller)参数说明二、测试计划设计2.1、Total Executions2.2、Percent Executions2.3、Per User 一、吞吐量控制器(Throughput Controller)参数说明 允许用户控制后代元素的执行的次数。…...

方正书版命令详解
方正书版常用的排版符包括: 空格:表示文字之间的间距,不同字号的文字需要适当调整空格大小。 省略号:用于省略一段文字,通常用三个点表示(…)。 破折号:用于表示强调或者断句&…...

Gradio的web界面演示与交互机器学习模型,高级接口特征《6》
大多数模型都是黑盒,其内部逻辑对最终用户是隐藏的。为了鼓励透明度,我们通过简单地将Interface类中的interpretation关键字设置为default,使得向模型添加解释变得非常容易。这允许您的用户了解输入的哪些部分负责输出。 1、Interpret解释 …...

本地项目上传到Git(Gitee)仓库
一、步骤解答(详细图解步骤见第二大点) 1、打开我们的项目所在文件夹,我们发现是不存在.git文件 2、在你的项目文件夹外层【鼠标右击】弹出菜单,在【鼠标右击】弹出的菜单中,点击【Git Bash Here】,弹出运…...

Android 12.0屏蔽掉SystemUI的某些通知提示音
1.概述 在12.0的系统开发中,在系统SystemUI中会发一些通知的声音,但是同时也会在开机的时候,会有一些通知的声音,特别是不想要的一些通知的声音, 这些对于产品还是有一些影响的,所以为了产品体验,就需要屏蔽掉一些开机的通知的声音 2.屏蔽某些通知的提示音的核心代码 …...

测试计划模板二
XXX测试计划 文档作者: 编写日期: 项目经理: 批准日期: 文档模板修改纪录表 日期 修改人 修改内容描述...

华为OD机试真题B卷 Java 实现【分奖金】,附详细解题思路
一、题目描述 公司老板做了一笔大生意,想要给每位员工分配一些奖金,想通过游戏的方式来决定每个人分多少钱。按照员工的工号顺序,每个人随机抽取一个数字。按照工号的顺序往后排列,遇到第一个数字比自己数字大的,那么…...

IMX6ULL平台I2C数据结构分析
IMX6ULL平台I2C数据结构分析 文章目录 IMX6ULL平台I2C数据结构分析i2c_clienti2c_adapterimx_i2c_structimx_i2c_hwdataimx_i2c_dma 在 i.MX 平台的 I2C 驱动中,存在多个相关的结构体,它们之间的联系和在内核中的作用如下: struct i2c_client…...

实时时钟 RTC(2)
RTC 使能与停止 RTC 上电后立即启动,不可关闭,软件应在32K 晶体振荡器完全起振后再设置当前时间;在晶体振荡器起振之前芯片使用内部环振计时,偏差较大。 RTC 时间设置 软件可以在任意时刻直接设置RTC 时间寄存器;由于…...

弄懂局部变量
成员变量和局部变量的区别 多个线程调用同一个对象的同一个方法时: 如果方法里无成员变量,那么不受任何影响 如果方法里有成员变量,只有读操作,不受影响 存在写操作,考虑多线程影响值 多线程调用…...

倾斜摄影三维模型数据的高程偏差修正的几何纠正技术方法探讨
倾斜摄影三维模型数据的高程偏差修正的几何纠正技术方法探讨 倾斜摄影是一种先进的数字摄影技术,可以生成高分辨率、高精度的三维模型数据。然而,在倾斜摄影中,由于相机的倾斜角度和地形的高程差异,可能会出现高程偏差问题。为了…...

怎么发表CCF期刊?CCF期刊有什么不同之处? - 易智编译EaseEditing
发表CCF期刊,可以参考一下步骤: 选择目标期刊: 首先选择一个适合自己的目标期刊,可以是CCF推荐的高水平期刊,也可以是其他被广泛认可的期刊。 撰写论文: 根据目标期刊的要求,撰写论文。确保论…...

feat:使用企业微信JS-SDK的onMenuShareAppMessage()实现点击转发自定义分享内容(TypeScript)
背景:企业微信应用使用企业微信JS-SDK的分享接口实现分享样式自定义 原生: 需要实现成: 企业微信JS-SDK 是企业微信面向网页开发者提供的 基于企业微信内 的网页开发工具包。 通过使用企业微信JS-SDK,网页开发者 可借助企业微信…...

Java键盘事件处理及监听机制解析
文章目录 概念KeyEventKeyListener代码演示总结 概念 Java事件处理采用了委派事件模型。在这个模型中,当事件发生时,产生事件的对象将事件信息传递给事件的监听者进行处理。在Java中,事件源是产生事件的对象,比如窗口、按钮等&am…...

Git详解——安装、使用、搭建、IDEA集成
Git 看目录,篇幅挺长,越往后面越重要 目录一、git是什么?二、为什么要使用Git?三、版本控制工具四、git下载安装以及环境配置五、git基本命令六、git项目搭建七、远程仓库怎么搞?git,gitlab,github,gitee区别八、ide…...

【JavaSE】Java基础语法(二十一):内部类
文章目录 1. 内部类的基本使用2. 成员内部类3. 局部内部类4. 匿名内部类5. 匿名内部类在开发中的使用(应用) 1. 内部类的基本使用 内部类概念 在一个类中定义一个类。举例:在一个类A的内部定义一个类B,类B就被称为内部类 内部类定…...

Ceph应用
//存储类型 块存储 一对一,只能被一个主机挂载使用,数据以块为单位进行存储,典型代表: 硬盘 文件存储 一对多,能被多个主机同时挂载使用,数据以文件的形式存储的(元数据和实际数据是分开存储的),并且有…...

Oxford online English-Chair a Meeting 05/29
Part1-Welcoming attendees and starting the meeting Getting people’s attention If I could have your attention, please. Could I have your attention, please? Good afternoon, everyone. -> Good afternoon, everyone, could I have your attention, please?…...

LeetCode: 二叉树的直径(java)
二叉树的直径 leetcode 543题。原题链接题目描述解题代码二叉树专题 leetcode 543题。原题链接 543题:二叉树的直径 题目描述 给你一棵二叉树的根节点,返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也…...

springboot+vue+java旅行旅游景点酒店预订出行订票系统eaog5
线上旅行信息管理系统要求实现以下功能: a.景点管理,展示景点的基础信息,介绍等信息。 b.酒店管理,展示酒店的基础信息,介绍等信息。 c.评价管理,可以查看景点或酒店的相关评价信息,客户消费完,…...

Linux :: 【基础指令篇 :: 用户管理:(2)】::设置用户密码(及本地Xshell 登录云服务器操作演示) :: passwd
前言:本篇是 Linux 基本操作篇章的内容! 笔者使用的环境是基于腾讯云服务器:CentOS 7.6 64bit。 学习集: C 入门到入土!!!学习合集Linux 从命令到网络再到内核!学习合集 目录索引&am…...

img[:, :, ::-1] 通俗理解
👨💻个人简介: 深度学习图像领域工作者 🎉工作总结链接:https://blog.csdn.net/qq_28949847/article/details/128552785 链接中主要是个人工作的总结,每个链接都是一些常用demo,…...

基于springboot+vue+elementui的健身房会员管理系统的
为了帮助用户更好的了解和理解程序的开发流程与相关内容,本文将通过六个章节进行内容阐述。 第一章:描述了程序的开发背景,程序运用于现实生活的目的与意义,以及程序文档的结构安排信息; 第二章:描述了程序…...

在酒店房间中的数据库索引
如果你经常去酒店,你会看到一块类似下面的标牌,指引你到达房间。这能够帮助你方便快速地找到房间,特别是当酒店拥有许多房间时。 以一个有9层的酒店为例。你的房间号是917。第一步是找到你的房间在哪一层,通常第一个数字表示楼层…...

Zookeeper学习---2、客户端API操作、客户端向服务端写数据流程
1、客户端API操作 1.1 IDEA 环境搭建 前提:保证 hadoop102、hadoop103、hadoop104 服务器上 Zookeeper 集群服务端启动。 1、创建一个工程:Zookeeper 2、添加pom文件 <?xml version"1.0" encoding"UTF-8"?> <project …...

Stack 栈的实现与应用
目录 1. 概念 2. 常用的栈的方法 2.1 方法 2.2 代码 3. 自己实现栈 3.1 构造MyStack 3.2 push() 3.3 ensureCapacity() 3.4 pop() 3.5 peek() 3.6 empty() 3.7 szie() 4. 栈的应用 1. 概念 栈(Stack)是一种数据结构&…...

CSDN中如何获得铁粉(用心篇)
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

es 三 安装 es 安装kibana
目录 安装7.3.0 版本 下载地址 一个比一个快 页面测试访问 安装kibana 下载 Config/kibana.yml 配置修改开启中文 页面访问 安装7.3.0 版本 下载地址 一个比一个快 Index of /elasticsearch/ 下载中心 - Elastic 中文社区 下载中心 - Elastic 中文社区 官网下载 开箱…...

牛客HJ43迷宫问题 - 创建智能体通过策略自己找路
文章目录 问题描述思路代码C 问题描述 描述 定义一个二维数组 N*M ,如 5 5 数组下所示: int maze[5][5] { 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 它表示一个迷宫,其中的1表示墙壁࿰…...