MapReduce实战案例(3)

案例三: MR实战之TOPN(自定义GroupingComparator)
项目准备
- 需求+测试数据
有如下订单数据
| 订单id | 商品id | 成交金额 |
|---|---|---|
| Order_0000001 | Pdt_01 | 222.8 |
| Order_0000001 | Pdt_05 | 25.8 |
| Order_0000002 | Pdt_03 | 522.8 |
| Order_0000002 | Pdt_04 | 122.4 |
| Order_0000002 | Pdt_05 | 722.4 |
| Order_0000003 | Pdt_01 | 222.8 |
现在需要求出每一个订单中成交金额最大的一笔交易
-
分析
a) 利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce
b) 在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值
项目实现
a)自定义groupingcomparator
/*** @Author 千锋大数据教学团队* @Company 千锋好程序员大数据* @Description 用于控制shuffle过程中reduce端对kv对的聚合逻辑*/
public class ItemidGroupingComparator extends WritableComparator {protected ItemidGroupingComparator() {super(OrderBean.class, true);}@Overridepublic int compare(WritableComparable a, WritableComparable b) {OrderBean abean = (OrderBean) a;OrderBean bbean = (OrderBean) b;//将item_id相同的bean都视为相同,从而聚合为一组return abean.getItemid().compareTo(bbean.getItemid());}
}
复制代码
文末扫码领取福利!
b)定义订单信息bean
/*** @Author 千锋大数据教学团队* @Company 千锋好程序员大数据* @Description 订单信息bean,实现hadoop的序列化机制*/
public class OrderBean implements WritableComparable<OrderBean>{private Text itemid;private DoubleWritable amount;public OrderBean() {}public OrderBean(Text itemid, DoubleWritable amount) {set(itemid, amount);}public void set(Text itemid, DoubleWritable amount) {this.itemid = itemid;this.amount = amount;}public Text getItemid() {return itemid;}public DoubleWritable getAmount() {return amount;}@Overridepublic int compareTo(OrderBean o) {int cmp = this.itemid.compareTo(o.getItemid());if (cmp == 0) {cmp = -this.amount.compareTo(o.getAmount());}return cmp;}@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(itemid.toString());out.writeDouble(amount.get());}@Overridepublic void readFields(DataInput in) throws IOException {String readUTF = in.readUTF();double readDouble = in.readDouble();this.itemid = new Text(readUTF);this.amount= new DoubleWritable(readDouble);}@Overridepublic String toString() {return itemid.toString() + "\t" + amount.get();}
}
复制代码
c) 编写MapReduce处理流程
/*** @Author 千锋大数据教学团队* @Company 千锋好程序员大数据* @Description 利用secondarysort机制输出每种item订单金额最大的记录*/public class SecondarySort {static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{OrderBean bean = new OrderBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();String[] fields = StringUtils.split(line, "\t");bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));context.write(bean, NullWritable.get());}}static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{//在设置了groupingcomparator以后,这里收到的kv数据 就是: <1001 87.6>,null <1001 76.5>,null .... //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>//要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {context.write(key, NullWritable.get());}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(SecondarySort.class);job.setMapperClass(SecondarySortMapper.class);job.setReducerClass(SecondarySortReducer.class);job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));//指定shuffle所使用的GroupingComparator类job.setGroupingComparatorClass(ItemidGroupingComparator.class);//指定shuffle所使用的partitioner类job.setPartitionerClass(ItemIdPartitioner.class);job.setNumReduceTasks(3);job.waitForCompletion(true);}}

也可以观看视频:
千锋大数据Hadoop全新增强版-先导片
相关文章:
MapReduce实战案例(3)
案例三: MR实战之TOPN(自定义GroupingComparator) 项目准备 需求测试数据 有如下订单数据 订单id商品id成交金额Order_0000001Pdt_01222.8Order_0000001Pdt_0525.8Order_0000002Pdt_03522.8Order_0000002Pdt_04122.4Order_0000002Pdt_05722.4Order_0000003Pdt_01222.8 现在…...
Socket(三)
文章目录 1. 设置Socket选项2. TCP_NODELAY3. SO_LINGER4. SO_TIMEOUT5. SO_RCVBUF和SO_SNDBUF6. SO_KEEPALIVE7. OOBINLINE8. SO_REUSEADDR9. IP_TOS服务类型10. Socket异常 1. 设置Socket选项 Socket选项指定了Java Socket类所依赖的原生socket如何发送和接受数据࿰…...
【JVM】12. 垃圾回收相关概念
文章目录 12.1. System.gc()的理解12.2. 内存溢出与内存泄露内存溢出(OOM)内存泄漏(Memory Leak) 12.3. Stop The World12.4. 垃圾回收的并行与并发并发(Concurrent)并行(Parallel)并…...
Java 版 spring cloud 工程系统管理 工程项目管理系统源码 工程项目各模块及其功能点清单
工程项目各模块及其功能点清单 一、系统管理 1、数据字典:实现对数据字典标签的增删改查操作 2、编码管理:实现对系统编码的增删改查操作 3、用户管理:管理和查看用户角色 4、菜单管理:实现对系统菜单的增删改查操…...
【Linux系统基础快速入门详解】Linux系统命令行介绍、命令提示符知识详解: ~/#/@等符号
Linux系统的命令行界面是Linux系统的核心部分,也是最常用的部分。在命令行界面中,用户可以使用各种Linux系统命令进行文件操作、系统管理、网络管理等操作。下面介绍一些常见的Linux系统命令行知识,以及命令提示符中的一些符号的含义。 1. 命令行界面 在Linux系统中,命令…...
Python 面向对象编程笔记:中级面向对象
__super__() 在 Python 中,super 是一个内置函数,用于调用父类方法。该函数可以在子类中调用父类中被重写的方法,从而实现对父类方法的继承并且进行扩展。它能够动态地查找当前子类继承链中的下一个类,从而允许设计者更加灵活地…...
JVM学习笔记(上)
1、总体路线 2、程序计数器 Program Counter Register 程序计数器(寄存器) 作用:是记录下一条 jvm 指令的执行地址行号。 特点: 是线程私有的不会存在内存溢出 解释器会解释指令为机器码交给 cpu 执行,程序计数器会…...
反爬虫技术
预计更新 一、 爬虫技术概述 1.1 什么是爬虫技术 1.2 爬虫技术的应用领域 1.3 爬虫技术的工作原理 二、 网络协议和HTTP协议 2.1 网络协议概述 2.2 HTTP协议介绍 2.3 HTTP请求和响应 三、 Python基础 3.1 Python语言概述 3.2 Python的基本数据类型 3.3 Python的流程控制语句 …...
JAVA中.equals()与 ==的区别
1. “”是运算符,如果是基本数据类型,则比较存储的值;如果是引用数据类型,则比较所指向对象的地址值。 2..equals() equals是Object的方法,比较的是所指向的对象的地址值,一般情况下,重写之后比…...
华为OD机试之羊、狼、农夫过河(Java源码)
羊、狼、农夫过河 题目描述 羊、狼、农夫都在岸边,当羊的数量小于狼的数量时,狼会攻击羊,农夫则会损失羊。农夫有一艘容量固定的船,能够承载固定数量的动物。 要求求出不损失羊情况下将全部羊和狼运到对岸需要的最小次数。只计算…...
C++ string的简单应用
C语言的字符串 C的字符串 头文件: #include<string.h> //c #include<string> //C #include<cstring> //C 比较string的大小 两个string对象相加 使用字符串对象来存放字符串 两个string对象相加 string str "Hello,"; st…...
Java中的阻塞队列
阻塞队列的基本概念 1、生产者、消费者的概念 他俩是设计模式的一种,提出这两种概念,通过一个容器的方式能解决强耦合问题 生产者、消费者之间不会直接通讯。通过一个第三方容器、队列的方式进行通讯 生产者生产完数据放入容器之后,不用等待消…...
PriorityBlockingQueue无界阻塞优先级队列
PriorityBlockingQueue无界阻塞优先级队列 PriorityBlockingQueue 是带优先级的无界阻塞队列,每次出队都返回优先级最高的元素,是二叉树最小堆的实 现,研究过数组方式存放最小堆节点的都知道,直接遍历队列元素是无序的。 如图 P…...
「HTML和CSS入门指南」p 标签详解
<p> 标签是什么? HTML5 中的 <p> 标签是用于定义段落的标签。它可以用来标记文章、新闻等长篇内容中的段落,并且可以与其他 HTML 元素配合使用。 <p> 标签的语法和属性 <p> 标签的语法非常简单,只需要在 HTML 文件中插入 <p> 和 </p>…...
【单目标优化算法】孔雀优化算法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
chatgpt赋能python:Python同一行多个语句:如何提高你的编程效率?
Python同一行多个语句:如何提高你的编程效率? Python是一种优雅的编程语言,拥有简洁易懂的语法,可以帮助你快速编写可以在各种领域使用的高级代码。其中,Python同一行多个语句,是一种可以大大提高编程效率…...
Java反射概述
2 反射 2.1 反射概述 Java反射机制:是指在运行时去获取一个类的变量和方法信息。然后通过获取到的信息来创建对象,调用方法的一种机制。由于这种动态性,可以极大的增强程序的灵活性,程序不用在编译期就完成确定,在运行期仍然可以扩展2.2 反射获取Class类的对象 我们要想通过反…...
《网络是怎样连接的》(一)
第一章web浏览器 简介 首先输入网址URL,浏览器进行解析,将我们需要哪些数据告诉服务器。浏览器向服务器发送消息,必须告诉操作系统的接收方的IP地址,所以浏览器先查出web服务器的IP地址,向DNS服务器查询域名对应的IP…...
Flink on yarn任务日志怎么看
1、jobmanager日志 在yarn上可以直接看 2、taskmanager日志 在flink的webui中可以看,但是flink任务失败后,webui就不存在了,那怎么看? 这是jobmanager的地址 hadoop02:19888/jobhistory/logs/hadoop02:45454/container_e03_16844…...
二次元的登录界面
今天还是继续坚持写博客,然后今天给大家带来比较具有二次元风格的登录界面,也只是用html和css来写的,大家可以来看看! 个人名片: 😊作者简介:一名大一在校生,web前端开发专业 &…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...
