当前位置: 首页 > news >正文

11.无监督学习之主成分分析

11.1 降维

降维的两种应用:一是数据压缩;二是可视化数据。

11.1.1 数据压缩

将相关性强的两个特征导致冗余,可以直接去掉其中一个特征,或者将两个特征进行某种转换,得到一个特征。

 11.1.2 可视化数据

直接看数据可能看不出什么现象出来

 但是通过图来进行对比,按照GDP或者是其他标准来看,会更明显。

11.2 主成分分析(PCA)

假设我们有一个二维的样本x数据集,当我们向对数据进行降维从二维到一维,也就是想到找一条能够将数据投影成一条直线。PCA会找一个低维得平面,刚刚的假设例子是一条直线,然后将数据投影在上面使这些蓝色小线段长度(有时也叫投影误差)平方最小,PCA要做的就是找到一个投影平面对数据进行投影使得能最小化这个距离。

主成分分析(PCA)是一种数据压缩的算法,他将数据压缩到k维度,并使得所有数据投影到新维度的距离最小。在应用PCA之前,常规的做法是先进行均值归一化特征常规化,使得特征x_{1},x_{2}得均值为0并且其数值在可比较范围之内。

PCA做的就是,对于二维降到一维:要试着找到一个向量,假设是u^{(i)}(u^{(i)}\in \mathbb{R}^{n}),要找一个数据投影后能够最小化投影误差的方向,在这个例子里,希望PCA能找到这个向量u^{(1)}。当把数据投影到u^{(1)}存在的这条直线上时,就会得到非常小的重构误差(如上图所示)。

对于N维降到K维:我们要找的就不是单个向量来对数据进行投影二是想寻找K个方向来对数据进行投影来最小化投影误差。

PCA不是线性回归,一个是投影距离,一个是点与直线上点的距离

下图的左边部分表示线性回归,当我们处理线性回归时,给定某个输入的特征量x来预测出某变量y的值。所以在线性回归中,我们要做的就是拟合一条直线来最小化点和直线之间的平方误差,要最小化的是图中蓝线之和的平方。下图的右边部分表示PCA,在处理PCA中,它要做的是试图最小化这些蓝色直线的长度(是他们最短的正交距离)。线性回归垂直x轴,求预测与实际y差;而PCA是垂直于拟合线,求正交距离。

 并且线性回归是用所有的x来预测y,在PCA中没有区别对待,没有什么特殊的变量y需要预测,相反我们有一系列特征都是同等对待。

PCA执行过程:首先对数据预处理,进行均值归一化(可能也要进行特征缩放),然后计算协方差,最后得到一个k维的矩阵。

 首先对数据进行均值归一化,然后确定要压缩的目标维度,即对应向量的个数,PCA的目标是使得所有数据距离新维度的距离最小。

将n维降到k维,下面是过程:

在进行数据预处理后,首先计算协方差(covariance matrix)Sigma是nxn的矩阵, 再进行特征缩放。

 

11.3 压缩重现

怎么样把降维的数据再重现回去?

 x_{approx} =U_{reduce}z(这里反求的x是近似的)

 11.4 确定维度K

 为了选择k也就是主要成分的数量,这里有一些有用的概念。

PCA所做的是尝试使得这个式子\frac{1}{m}\sum_{i=1}^{m}\left \| x^{(i)}-x_{approx}^{(i)} \right \|^{2}最小化,这就是平均平方差投影误差训练集数据的总方差\frac{1}{m}\sum_{i=1}^{m}\left \| x^{(i)} \right \|^{2}(所有训练实例的范数得平均值)。也就是说,它代表了我的数据点与(0,0)点平均有多远。当我们选择k时,我们要取得最小值的k,使得下图的不等式小于等于0.01。

选择k使得平均投影平方误差(分子)除以总方差(分母),也就是代表数据波动有多大。这里的0.01,用术语说就是保留99%的方差特性,也就是降维后保留的数据量要占到原数据的99%以上。variance在这里不应该理解成为方差而是差异,PCA其实是保留差异的分量,将具有相关性。可能95%到99%是最常使用的数值。因为很多数据特征相关,所以降维依然可以保留95%以上的特征。

 实现这一点的步骤如下:

如果你想要k的值,让k=1,执行PCA算法,计算下面这些变量的值,然后检查下面不等式是否满足小于等于0.01,如果不成立继续让k=2,k=3,k=4...;如果成立就选择k=1。但是这样做效率不高。

 可以使用PCA运算中已经写好的svd分解函数,调用svd,通过Sigma参数,得到U,S,V三个参数。其中,S矩阵是一个对角阵。并且可以证明对于给定的k,将\frac{\frac{1}{m}\sum_{i=1}^{m}\left \| x^{(i)}-x_{approx}^{(i)} \right \|^{2}}{\frac{1}{m}\sum_{i=1}^{m}\left \| x^{(i)} \right \|^{2}}变换成1-\frac{\sum_{i=1}^{k}S_{ii}}{\sum_{i=1}^{n}S_{ii}}这样计算,接下来要做的就是验证它是否小于等于0.01,或者验证\frac{\sum_{i=1}^{k}S_{ii}}{\sum_{i=1}^{n}S_{ii}}是否大于0.99。

 11.5 PCA的应用

如果直接再交叉验证集和测试集上用PCA会过拟合,所以只能用训练集降维矩阵去给测试机和交叉验证集做映射,不能另外在上面做PCA。

PCA的应用:首先它能进行数据压缩,其次可以使用PCA去加速学习算法以及可视化

PCA不能防止过拟合!过拟合是由于某些异常数据的影响而产生的,通过主成分分析只能去除异常数据内部的一部分噪音,并不能把异常数据本身从数据集中去除,异常数据在投影面上的异常性还是存在。解决过拟合的好方式使用正则化。

PCA有时候会丢失一些重要的数据信息,这样训练出来的模型性能会减弱,除非数据太大或者算法太慢才会考虑PCA。

相关文章:

11.无监督学习之主成分分析

11.1 降维 降维的两种应用:一是数据压缩;二是可视化数据。 11.1.1 数据压缩 将相关性强的两个特征导致冗余,可以直接去掉其中一个特征,或者将两个特征进行某种转换,得到一个特征。 11.1.2 可视化数据 直接看数据可…...

「HTML和CSS入门指南」figcaption 标签详解

什么是 figcaption 标签? 在 HTML 中,figcaption 标签用于为与 figure 元素相关的媒体内容提供说明性文本。通常用于包含图像、音频或视频等媒体元素的说明文本。 figcaption 标签的基本语法 以下是 figcaption 标签的基本语法: <figure><!-- 在这里放置您的媒体…...

电子企业实施数字化工厂建设之前,需要注意哪些

随着工业4.0时代的到来&#xff0c;数字化工厂建设已成为越来越多电子企业的重要议题。数字化工厂管理系统能够提高生产效率、降低成本、提高产品质量等多个方面的优势&#xff0c;对于企业的可持续发展具有重要意义。然而&#xff0c;在实施电子企业数字化工厂建设之前&#x…...

迅捷pdf实现多页插入

之前我们使用福昕阅读器实现了在每一页插入logo 这里我们用迅捷pdf再来一次&#xff0c;别问&#xff0c;问就是公司买了会员 首先声明&#xff0c;这里已经有会员了&#xff0c;所以不知道别人操作是不是需要会员&#xff0c;担心的话可以看看上一篇福昕阅读器版本 打开编辑…...

调用阿里云API实现证件照生成

目录 1. 作者介绍2. 算法介绍2.1 阿里云介绍2.2 证件照生成背景2.3 图像分割算法 3.调用阿里云API进行证件照生成实例3.1 准备工作3.2 实验代码3.3 实验结果与分析 参考&#xff08;可供参考的链接和引用文献&#xff09; 1. 作者介绍 王逸腾&#xff0c;男&#xff0c;西安工…...

PHP 转换 excel中读取的时间

首先&#xff0c;我们需要知道PHPExcel的时间和日期格式是以Excel内部的“1900年1月1日”为基础&#xff0c;以天为单位来计算的。即Excel日期与PHP时间戳之间存在一个时间偏移量。通过查阅PHPExcel的官方文档&#xff0c;我们可以得到以下的计算公式&#xff1a; // 读取exce…...

Cmake工具的简单使用

引言 本篇文章讲述如何简单的使用cmake工具构建一个项目&#xff0c;帮助入门的c新手学会如何使用cmake. 我们在Clion新创建一个项目时&#xff0c;会发现&#xff0c;除了main.cpp文件之外&#xff0c;还存在一个build-debug目录和一个CMakelists.txt文件&#xff0c;如图: …...

html选择器

基本选择器 基本选择器 : 标签选择器 , 类选择器 , ID选择器 标签选择器 代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEed…...

Leetcode 剑指 Offer II 030. 插入、删除和随机访问都是 O(1) 的容器

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer&#xff08;专项突击版&#xff09;系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 设计一个支持在平均 时间复杂度 O(1) 下&#xff0c;执行以下操作…...

django实现读取数据导出生成excel表格

目录 一、简单示例&#xff1a; 1.创建文件对象&#xff1a; 2.添加工作表&#xff1a; 3.写入数据&#xff1a; 二、实践出真理 需要先安装xlwt模块 pip install -i https://pypi.douban.com/simple xlwt一、简单示例&#xff1a; import xlwt# 创建一个Excel文件对象 …...

DevOps系列文章之 Docker-compose

一&#xff0c;Docker-compose全集 1&#xff0c;Docker-compose简介 Docker-Compose项目是Docker官方的开源项目&#xff0c;负责实现对Docker容器集群的快速编排。 Docker-Compose将所管理的容器分为三层&#xff0c;分别是工程&#xff08;project&#xff09;&#xff0c…...

Vue Router入门:轻松构建单页应用程序

Vue.js是一种流行的前端JavaScript框架,可以让开发人员轻松构建动态用户界面。Vue.js的一个关键特性是其路由系统,它使得开发人员可以轻松创建具有多个视图和页面的单页应用程序(SPA)。在本文中,我们将探讨如何使用Vue Router在Vue.js中构建SPA。我们将介绍如何安装和配置…...

ITSM 如何帮助制造业企业

ITSM在现代制造业中的作用 在过去的几年中&#xff0c;制造业已经看到了快速的数字化&#xff0c;以智能制造技术改进生产技术。在工业4.0和工业5.0的推动下&#xff0c;制造商正在摆脱陈旧 以及利用物联网、人工智能、机器学习和大数据等先进技术的互联智能制造系统&#xff…...

leecode

leecode20&#xff0c;有效的括号&#xff0c;栈 class Solution:def isValid(self, s: str) -> bool:def check(ch1,ch2):if ch1 [ and ch2 ]:return Trueelif ch1 ( and ch2 ):return Trueelif ch1 { and ch2 }:return Trueelse:return Falsestack []for i in ran…...

2023-06-09 LeetCode每日一题(修改图中的边权)<未来补全>

2023-06-09每日一题 一、题目编号 2699. 修改图中的边权二、题目链接 点击跳转到题目位置 三、题目描述 给你一个 n 个节点的 无向带权连通 图&#xff0c;节点编号为 0 到 n - 1 &#xff0c;再给你一个整数数组 edges &#xff0c;其中 edges[i] [ai, bi, wi] 表示节点…...

Linux 应用程序信号量使用实战

背景 在项目实施过程中&#xff0c;有个机制需要做两个线程之间的同步。 具体需求如下&#xff1a; 首先&#xff0c;线程1需要把资源读取到缓存 其次&#xff0c;线程2才可以操作这块缓存 上述两个动作顺序交替重复。 思路 使用信号量解决思路&#xff0c;申请两个信号…...

【Java多线程进阶】synchronized工作原理

前言 本期讲解 synchronized 工作的原理以及常见的锁优化机制&#xff0c;相信大家在看完这篇博文后对 synchronized 工作流程有一定的理解。话不多说&#xff0c;让我们快速进入学习吧~ 目录 1. 锁的工作流程 2. 偏向锁 3. 轻量级锁和重量级锁 3.1 轻量级锁 3.2 重量级锁…...

C语言经典题目(三)

C站的小伙伴们&#xff0c;大家好呀&#xff01;&#x1f60a;&#x1f60a;✨✨这一篇是C语言之经典题目篇&#xff0c;除程序设计&#xff0c;还有一些不错的程序分析&#xff0c;快来和我一起进入C语言的世界吧&#xff01;✨✨✨ &#x1f495;C语言其他刷题篇在这里哦&…...

九、(补充文章四)Arcgis实现深度学习训练样本数据的批量制作——只靠原图+shp如何批量制作样本图片

之前写了一些个深度学习系列文 其中先是单张样本的制作方法 最后通过构造模型批量处理 大大提高了生成样本的速度 四、Arcgis实现深度学习河流训练样本数据的制作(使用软件批量获取样本图片)——对已经获取到的完整面状样本数据进行处理 但是这个方法不仅仅需要shp和原图 还需要…...

MKS SERVO4257D 闭环步进电机_系列8 CAN通讯示例

第1部分 产品介绍 MKS SERVO 28D/35D/42D/57D 系列闭环步进电机是创客基地为满足市场需求而自主研发的一款产品。具备脉冲接口和RS485/CAN串行接口&#xff0c;支持MODBUS-RTU通讯协议&#xff0c;内置高效FOC矢量算法&#xff0c;采用高精度编码器&#xff0c;通过位置反馈&a…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...