当前位置: 首页 > news >正文

第六十八天学习记录:高等数学:导数(宋浩板书)

导数是微积分中的一个概念,描述了函数在某一个点上的变化率。具体地说,函数 f ( x ) f(x) f(x) x = a x=a x=a处的导数为 f ′ ( a ) f'(a) f(a),表示当 x x x a a a处发生微小的变化 Δ x \Delta x Δx时, f ( x ) f(x) f(x)对应的值 f ( a ) f(a) f(a)相应地发生的变化 Δ f \Delta f Δf Δ x \Delta x Δx的比值,即:

f ′ ( a ) = lim ⁡ Δ x → 0 Δ f Δ x = lim ⁡ Δ x → 0 f ( a + Δ x ) − f ( a ) Δ x f'(a) = \lim_{\Delta x\to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x\to 0} \frac{f(a+\Delta x) - f(a)}{\Delta x} f(a)=Δx0limΔxΔf=Δx0limΔxf(a+Δx)f(a)

导数可以帮助我们判断函数在某一个点上是递增还是递减,并且可以用来求极值和确定函数的曲线形状等。具体地说,如果导数 f ′ ( x ) f'(x) f(x) x = a x=a x=a处为正,则说明函数在该点附近是递增的;如果导数 f ′ ( x ) f'(x) f(x) x = a x=a x=a处为负,则说明函数在该点附近是递减的;如果导数 f ′ ( x ) f'(x) f(x) x = a x=a x=a处为零,可能是函数的局部极值点或拐点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

单侧导数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

导数的几何含义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可导与连续的关系

在这里插入图片描述

求导法则 和差积商(本章最重要)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

反函数的求导法则

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

复合函数的求导(链式法则)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

导数公式(重点)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

高阶导数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

隐函数求导

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

第六十八天学习记录:高等数学:导数(宋浩板书)

导数是微积分中的一个概念,描述了函数在某一个点上的变化率。具体地说,函数 f ( x ) f(x) f(x)在 x a xa xa处的导数为 f ′ ( a ) f(a) f′(a),表示当 x x x在 a a a处发生微小的变化 Δ x \Delta x Δx时, f ( x ) f(x) f(x)对…...

unreal 5 实现角色拾取功能

要实现角色拾取功能,我们需要实现蓝图接口功能,蓝图接口主要提供的是蓝图和蓝图之间可以通信,接下来,跟着教程,实现一下角色的拾取功能。 首先,我们要实现一个就是可视区的物品在朝向它的时候,会…...

chatgpt赋能python:如何使用Python升序排列一个列表?

如何使用Python升序排列一个列表? 在Python编程中,我们经常需要对列表进行排序。列表排序是一种常见的操作,可以帮助我们对数据进行分析和管理。在这篇文章中,我们将学习如何使用Python对一个列表进行升序排列。 什么是升序排列…...

Lecture 20 Topic Modelling

目录 Topic ModellingA Brief History of Topic ModelsLDAEvaluationConclusion Topic Modelling makeingsense of text English Wikipedia: 6M articlesTwitter: 500M tweets per dayNew York Times: 15M articlesarXiv: 1M articlesWhat can we do if we want to learn somet…...

ThreadPoolExecutor线程池

文章目录 一、ThreadPool线程池状态二、ThreadPoolExecutor构造方法三、Executors3.1 固定大小线程池3.2 带缓冲线程池3.3 单线程线程池 四、ThreadPoolExecutor4.1 execute(Runnable task)方法使用4.2 submit()方法4.3 invokeAll()4.4 invokeAny()4.5 shutdown()4.6 shutdownN…...

chatgpt赋能python:Python实践:如何升级pip

Python实践:如何升级pip Python作为一门高效的脚本语言,被广泛应用于数据分析、人工智能、Web开发等领域。而pip则是Python的包管理工具,是开发Python应用的必备工具。但是pip在使用过程中,有时候会出现版本不兼容或者出现漏洞等…...

【JavaEE进阶】mybatis

目录: 一、Mybatis是什么 三个映射关系如下图: 二、mybatis的使用(前置工作简单案例) 第一步:导入MAVEN依赖 第二步: 在spring项目当中新建数据源 第三步:新建一个实体类,是和…...

Redis的大key

什么是 redis 的大 key redis 的大 key 不是指存储在 redis 中的某个 key 的大小超过一定的阈值,而是该 key 所对应的 value 过大对于 string 类型来说,一般情况下超过 10KB 则认为是大 key;对于set、zset、hash 等类型来说,一般…...

MMPretrain

title: mmpretrain实战 date: 2023-06-07 16:04:01 tags: [image classification,mmlab] mmpretrain实战 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccTl9bOl-1686129437336)(null)] 主要讲解了安装,还有使用教程.安装教程直接参考官网.下面讲…...

栈和队列(数据结构刷题)[一]-python

文章目录 前言一、原理介绍二、用栈实现队列1.操作2.思路 三、关于面试考察栈里面的元素在内存中是连续分布的么? 前言 提到栈和队列,大家可能对它们的了解只停留在表面,再深入一点,好像知道又好像不知道的感觉。本文我将从底层实…...

【备战秋招】JAVA集合

集合 前言 一方面, 面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象 的操作,就要 对对象进行存储。 另一方面,使用Array存储对象方面具有一些弊端,而Java 集合就像一种容器,可以动态地把多…...

setState详解

this. setState( [partialState], [callback]) 1.[partialState] :支持部分状态更改 this, setState({ x:100 //不论总共有多少状态,我们只修改了x,其余的状态不动 });callback :在状态更改/视图更新完毕后触发执行,也可以说只要执行了setS…...

Qt5.12.6配置Android Arm开发环境(windows)

1. 安装jdk1.8 2.安装Android Studio 并安装 SDK 与NDK SDK Tools 选择 26.0.3 SDK Platform 选择 Android SDK Platform 26 NDK选择19版本 安卓ARM环境配置成功如下: JDK1.8 , SDK 26 , NDK 19 在安装QT时要选择 ARMv7(32位CPU)与ARM64-v8a(64位CPU) 选择支持android平台…...

七、进程程序替换

文章目录 一、进程程序替换(一)概念(二)为什么程序替换(三)程序替换的原理(四)如何进行程序替换1. execl2. 引入进程创建——子进程执行程序替换,会不会影响父进程呢? &…...

C++核心编程——详解运算符重载

文章目录&#x1f4ac; 一.运算符重载基础知识①基本概念②运算符重载的规则③运算符重载形式④运算符重载建议 二.常用运算符重载①左移(<<)和右移(>>)运算符重载1️⃣重载后函数参数是什么&#xff1f;2️⃣重载的函数返回类型是什么&#xff1f;3️⃣重载为哪种…...

2023年前端面试汇总-CSS

1. CSS基础 1.1. CSS选择器及其优先级 对于选择器的优先级&#xff1a; 1. 标签选择器、伪元素选择器&#xff1a;1&#xff1b; 2. 类选择器、伪类选择器、属性选择器&#xff1a;10&#xff1b; 3. id 选择器&#xff1a;100&#xff1b; 4. 内联样式&#xff1a;1000&a…...

Java调用Pytorch实现以图搜图(附源码)

Java调用Pytorch实现以图搜图 设计技术栈&#xff1a; 1、ElasticSearch环境&#xff1b; 2、Python运行环境&#xff08;如果事先没有pytorch模型时&#xff0c;可以用python脚本创建模型&#xff09;&#xff1b; 1、运行效果 2、创建模型&#xff08;有则可以跳过&#xf…...

【EasyX】实时时钟

目录 实时时钟1. 绘制静态秒针2. 秒针的转动3. 根据实际时间转动4. 添加时针和分针5. 添加表盘刻度 实时时钟 本博客介绍利用EasyX实现一个实时钟表的小程序&#xff0c;同时学习时间函数的使用。 本文源码可从github获取 1. 绘制静态秒针 第一步定义钟表的中心坐标center&a…...

基于XC7Z100的PCIe采集卡(GMSL FMC采集卡)

GMSL 图像采集卡 特性 ● PCIe Gen2.0 X8 总线&#xff1b; ● 支持V4L2调用&#xff1b; ● 1路CAN接口&#xff1b; ● 6路/12路 GMSL1/2摄像头输入&#xff0c;最高可达8MP&#xff1b; ● 2路可定义相机同步触发输入/输出&#xff1b; 优势 ● 采用PCIe主卡与FMC子…...

Kibana:使用 Kibana 自带数据进行可视化(一)

在今天的练习中&#xff0c;我们将使用 Kibana 自带的数据来进行一些可视化的展示。希望对刚开始使用 Kibana 的用户有所帮助。 前提条件 如果你还没有安装好自己的 Elastic Stack&#xff0c;你可以参考如下的视频来开启 Elastic Stack 并进行下面的练习。你可以开通阿里云检…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...