当前位置: 首页 > news >正文

第七十天学习记录:高等数学:微分(宋浩板书)

微分的定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本微分公式与法则

在这里插入图片描述
在这里插入图片描述

复合函数的微分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微分的几何意义

在这里插入图片描述

微分在近似计算中应用

在这里插入图片描述
在这里插入图片描述
sin(x+y) = sin(x)cos(y) + cos(x)sin(y)可以用三角形的几何图形来进行证明。

假设在一个单位圆上,点A(x,y)的坐标为(x,y),点B(x’, y’)的坐标为(x’, y’)。则以两点为直角的直角三角形的斜边长为1,且所在的角为夹角x+y。

接下来,通过计算三角形中的各条边可以得到:

sin(x+y) = y’+y
cos(x+y) = x’+x

将cos x = x, sin x = y, cos y = x’ 和 sin y = y’ 代入上述公式得到:

sin(x+y) = sin(x)cos(y) + cos(x)sin(y)

至此,公式的正确性得到证明。

同时,我们还可以在单位圆上仿照上面的方法证明和差化积公式的正确性,这同样也是基于三角形的几何形式得到的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微分中值定理 罗尔定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
微积分中解决实际问题的过程一般包括两个步骤:微分和积分。

微分就是求导数,其本质是研究函数在某个点附近的局部变化,是一种用来描述函数变化情况的方法。而导数的定义是函数在某点处的变化速率,可以通过极限的方式准确地求解,不需要使用任何近似值。因此,导数的求解不需要近似值。

而微分的目的是为了研究函数在某个区间内的整体变化情况,例如函数的极值、拐点等。微分中经常需要计算函数的斜率,也就是导数。在一些情况下,我们无法直接求解导数,需要利用差商进行近似计算。这里的差商是指函数在两个点处的函数值之差与这两个点之间的距离之比,因此差商实际上是一种近似的导数计算方法。因此,微分中的近似计算需要使用差商这种近似的方法来实现。

另外,导数能够准确地描述函数在某点附近的局部变化,而微分则研究函数在整个区间内的整体变化情况。因此,在求解导数时,只需要关注函数在某点的变化情况,精度较高;而在微分过程中,则需要考虑整个区间内的变化情况,需要使用近似方法来近似计算。

柯西中值定理

在这里插入图片描述
在这里插入图片描述

洛必达法则★★★★★

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

泰勒公式

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

单调性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

极值与其求法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

渐近线

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数图形的绘制

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
为什么偶函数求导就是奇函数?
设 f(x) 是一个偶函数,即 f(x) = f(-x)。则有:

f’(x) = lim(h→0)[f(x+h) - f(x)]/h

将 h 替换为 -h,得到:

f’(-x) = lim(-h→0)[f(-x+h) - f(-x)]/h

因为 f(x) 是偶函数,所以 f(-x+h) = f(-(x-h)) = f(x-h),且 f(-x) = f(x),可以得到:

f’(-x) = lim(h→0)[-f(x-h) + f(x)]/(-h)

因为减去一个数可以看作加上它的相反数,即 -f(x-h) = f(-(x-h)) = f(x+h),可以得到:

f’(-x) = lim(h→0)[f(x+h) - f(x)]/h = f’(x)

所以 f(x) 的导函数 f’(x) 是偶函数。

因此,若偶函数 f(x) 求导后得到的导函数为 f’(x),则 f’(x) 是奇函数。
在这里插入图片描述
在这里插入图片描述
这是二次方程标准形式,可以使用求根公式(也称为“二次公式”)求解。

二次公式:

对于二次方程 ax^2 + bx + c = 0,解的公式为:

x = (-b ± √(b^2 - 4ac)) / 2a

即,解为两个根:

x1 = (-b + √(b^2 - 4ac)) / 2a

x2 = (-b - √(b^2 - 4ac)) / 2a

其中±表示两种可能的符号(+或-),√表示算术平方根。

根的性质:

  1. 当 b^2 - 4ac > 0 时,方程有两个不相等的实数根。

  2. 当 b^2 - 4ac = 0 时,方程有两个相等的实数根。

  3. 当 b^2 - 4ac < 0 时,方程没有实数根,但有两个共轭复根。

注意:

求根公式对于系数 a 不为 0 的二次方程适用,对于 a = 0 的情况,此时方程不再是二次方程,而是一次方程。

另外,在实际计算过程中,要注意避免出现计算误差或溢出等情况,需要采取适当的数值稳定性措施。
在这里插入图片描述

曲率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

第七十天学习记录:高等数学:微分(宋浩板书)

微分的定义 基本微分公式与法则 复合函数的微分 微分的几何意义 微分在近似计算中应用 sin(xy) sin(x)cos(y) cos(x)sin(y)可以用三角形的几何图形来进行证明。 假设在一个单位圆上&#xff0c;点A(x,y)的坐标为(x,y)&#xff0c;点B(x’, y’)的坐标为(x’, y’)。则以两点…...

Jmeter

目录 一、jmeter 安装 二、jmeter 介绍 1、jmeter是什么&#xff1f; 2、jmeter 用来做什么&#xff1f; 3、优点 4、缺点 5、jmeter 目录介绍 ①_bin 目录介绍 ② docs 目录 — — 接口文档目录 ③ extras目录 — — 扩展插件目录 ④ lib 目录 — — 所用到的插件目录 ⑤ lic…...

Flutter 学习 之 时间转换工具类

Flutter 学习之时间转换工具类 在 Flutter 应用程序开发中&#xff0c;处理时间戳是非常常见的需求。我们通常需要将时间戳转换为人类可读的日期时间格式。为了实现这一点&#xff0c;我们可以创建一个时间转换工具类。 实现方法 以下是一个简单的时间转换工具类的示例&…...

docker consul

docker consul的容器服务更新与发现 服务注册与发现是微服务架构中不可或缺的重要组件&#xff0c;起始服务都是单节点的&#xff0c;不保障高可用性&#xff0c;也不考虑服务的承载压力&#xff0c;服务之间调用单纯的通过接口访问的&#xff0c;直到后来出现多个节点的分布式…...

全志V3S嵌入式驱动开发(开发环境再升级)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们陆陆续续开发了差不多有10个驱动&#xff0c;涉及到网口、串口、音频和视频等几个方面。但是整个开发的效率还是比较低的。每次开发调试的…...

ChatGPT:人工智能助手的新时代

ChatGPT&#xff1a;人工智能助手的新时代 文章目录 ChatGPT&#xff1a;人工智能助手的新时代引言ChatGPT的原理GPT-3.5架构概述预训练和微调过程生成式对话生成技术 ChatGPT的应用场景智能助理客服机器人虚拟角色教育辅助创意生成个性化推荐 ChatGPT的优势ChatGPT的使用技巧与…...

【面试】二、Java补充知识

JVM中的存储 JVM的五块存储区&#xff1a; 方法区&#xff08;线程共享&#xff09; 方法区用来存储类的各种信息&#xff08;类名、方法信息等&#xff09;、静态变量、常量和编译后的代码也存储在方法区中 方法区中也存在运行时常量池 ​ 常量池中会存放程序运行时生成的各种…...

LISTENER、TNSNAMES和SQLNET配置文件

LISTENER、TNSNAMES和SQLNET配置文件 用户连接验证listener.ora文件配置监听日志local_listener参数 tnsnames.ora文件配置 sqlnet.ora文件配置 用户连接验证 Oracle数据库中用户有三种常见的登录验证方式&#xff1a; 通过操作系统用户验证&#xff1a;必须是在数据库服务器…...

【Leetcode -225.用队列实现栈 -232.用栈实现队列】

Leetcode Leetcode -225.用队列实现栈Leetcode -232.用栈实现队列 Leetcode -225.用队列实现栈 题目&#xff1a;仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#xff09;。 …...

悟道3.0全面开源!LeCun VS Max 智源大会最新演讲

夕小瑶科技说 原创 作者 | 小戏 2023 年智源大会如期召开&#xff01; 这场汇集了 Geoffery Hinton、Yann LeCun、姚期智、Joseph Sifakis、Sam Altman、Russell 等一众几乎是 AI 领域学界业界“半壁江山”的大佬们的学术盛会&#xff0c;聚焦 AI 领域的前沿问题&#xff0c…...

2023蓝桥杯大学A组C++决赛游记+个人题解

Day0 发烧了一晚上没睡着&#xff0c;感觉鼻子被打火机烧烤一样难受&#xff0c;心情烦躁 早上6点起来吃了个早饭&#xff0c;思考能力完全丧失了&#xff0c;开始看此花亭奇谭 看了六集&#xff0c;准备复习数据结构考试&#xff0c;然后秒睡 一睁眼就是下午2点了 挂了个…...

wkhtmltopdf踩坑记录

1. 不支持writing-mode。 需求是文字纵向排列&#xff0c;内容从左到右&#xff0c;本来用的是writing-mode: tb-rl;&#xff0c;插件转pdf后发现失效。 解决方法&#xff1a; 让每一列文字单独用一个div容器包裹&#xff0c;对它的宽度进行限制&#xff0c;控制每一行只能出现…...

贪心算法part2 | ● 122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II

文章目录 122.买卖股票的最佳时机II思路思路代码官方题解困难 55. 跳跃游戏思路思路代码官方题解代码困难 45.跳跃游戏II思路思路代码困难 今日收获 122.买卖股票的最佳时机II 122.买卖股票的最佳时机II 思路 局部最优&#xff1a;将当天价格和前一天比较&#xff0c;价格涨…...

[C++]异常笔记

我不怕练过一万种腿法的对手,就怕将一种腿法 练一万次的对手。 什么是C的异常 在C中&#xff0c;异常处理通常使用try-catch块来实现。try块用于包含可能会抛出异常的代码&#xff0c;而catch块用于捕获并处理异常。当异常被抛出时&#xff0c;程序会跳过try块中未执行…...

浅谈一级机电管道设计中的压力与介质温度

管道设计是工程设计中的一个非常重要的部分&#xff0c;管道的设计需要考虑到许多因素&#xff0c;其中就包括管道设计压力分类和介质温度分类。这两个因素是在设计管道时必须非常严格考虑的&#xff0c; 首先是管道设计压力分类。在管道设计中&#xff0c;根据工作要求和要传输…...

Docker网络模型(八)使用 macvlan 网络

使用 macvlan 网络 一些应用程序&#xff0c;特别是传统的应用程序或监控网络流量的应用程序&#xff0c;期望直接连接到物理网络。在这种情况下&#xff0c;你可以使用 macvlan 网络驱动为每个容器的虚拟网络接口分配一个MAC地址&#xff0c;使其看起来像一个直接连接到物理网…...

控制视图内容的位置

文本域中的提示内容在默认情况下是垂直居中的&#xff0c;要改变文本在文本域中的位置&#xff0c;可以使用android:gravity来实现。 利用android:gravity可以指定如何在视图中放置视图内容&#xff0c;例如&#xff0c;如何在文本域中放置文本。 如果希望视图文本显示在上方&a…...

【分布式系统与一致性协议】

分布式系统与一致性协议 CAP原理APCPCA总结BASE理论 一致性拜占庭将军问题 分布式系统是一个硬件或软件组件分布在不同的网络计算机上&#xff0c;彼此之间仅仅通过消息传递进行通信和协调的系统。 分布式系统的设计目标一般包含如下&#xff1a; 可用性&#xff1a;可用性是分…...

音视频领域的未来发展方向展望

文章目录 音视频领域的未来发展方向全景音视频技术虚拟现实和增强现实的区别 人工智能技术可视化智能分析智能语音交互图像识别和视频分析技术 语音处理智能推荐技术远程实时通信 流媒体技术未来方向 音视频领域的未来发展方向 全景音视频技术&#xff1a;全景音视频技术是近年…...

时间同步/集群时间同步/在线/离线

目录 一、能够连接外网 二、集群不能连接外网--同步其它服务器时间 一、能够连接外网 1.介绍ntp时间协议 NTP&#xff08;Network Time Protocol&#xff09;网络时间协议&#xff0c;是用来使计算机时间同步的一种协议&#xff0c;它可以使计算机对其服务器或时钟源做同步…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...