深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用,NASNet是由Google Brain团队开发的一种具有自动搜索能力的神经网络模型,利用强化学习和进化算法等技术来自动地搜索最优的神经网络架构。NASNet模型的设计灵感来源于基因组序列中的自然选择和突变等机制。本文将介绍NASNet模型的原理,使用PyTorch搭建模型,并通过实例数据进行训练和测试。文章将分为以下几个部分:
- 简介
- NASNet模型原理
- PyTorch搭建NASNet模型
- 数据样例
- 加载数据并训练模型
- 测试模型
- 总结
1. 简介
NASNet是一种基于神经网络架构搜索(Neural Architecture Search,NAS)的卷积神经网络。NASNet通过自动搜索最优的网络结构,可以在各种任务上取得优异的性能。本文将详细介绍NASNet模型的原理,并使用PyTorch实现模型的搭建、训练和测试。
2. NASNet模型原理
NASNet的核心思想是通过神经网络架构搜索(NAS)来自动发现最优的网络结构。NASNet使用强化学习的方法,通过训练一个循环神经网络(RNN)来生成网络结构。在搜索过程中,RNN会生成一个可变长度的字符串,这个字符串描述了一个卷积神经网络的结构。然后,这个结构被用于训练一个子网络,子网络的性能会作为RNN的奖励信号。通过多次迭代,RNN会学会生成更好的网络结构。
NASNet的一个关键创新是引入了两种基本的网络结构:普通单元(Normal Cell)
相关文章:
深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用,NASNet是由Google Brain团队开发的一种具有自动搜索能力的神经网络模型,利用强化学习和进化算法等技术来自动地搜索最优的神经网络架构。NASNet模型的设计灵感…...
碳排放预测模型 | Python实现基于机器学习回归分析的碳排放预测模型——随机森林、决策树、KNN 和多层感知器 (MLP) 预测分析
文章目录 效果一览文章概述研究内容环境准备源码设计KNNRandom ForestDecision TreeMLPModel Evaluation学习总结参考资料效果一览...
人体检测技术之毫米波雷达
人体检测技术之毫米波雷达 1.概述 智能人脸/视频锁领域的人体检测需求是要求远距离达到1m左右即可,一旦在此距离内检测人,则锁唤醒进行人脸识别,视频录制等操作。所以,人体检测技术非常关键。 选型主要是几个维度: 1.支持检测的距离范围,能否准确输出距离信息 2.支持…...
“Chain of Thought Reasoning“ 和 “Chain Prompts“ 是什么
"Chain of Thought Reasoning" 和 "Chain Prompts" 是什么 1. "Chain Prompts" 是什么2. “Chain of Thought Reasoning” 是什么 1. “Chain Prompts” 是什么 “Chain Prompts” 是指一系列相关的提示,它们之间有逻辑上的联系和依赖关系。用户…...
signal
读信号,dqs 是对齐到dq的边沿, 写信号,dqs 的边沿是对到中间的。 spec 就是这样规定的。我们在dq的最中间的采样,肯定是最安全的。 dqs 是对齐到dq的边沿 , 在silicon 内部,还是通过移位完成的。 rl: re…...
深度研究微软的资产负债表和财务状况以及未来投资价值
来源:猛兽财经 作者:猛兽财经 微软股票的关键指标 猛兽财经认为,微软公布的2023财年第三季度财务业绩,有三个关键指标值得投资者关注。 第一个关键指标是利息收入。微软的利息收入目前已经同比增长了44%,从2022财年第…...
Mac电脑删除第三方软件工具CleanMyMac X
经常使用Mac的人都知道,Mac除了可以在AppStore下载应用程序,还有许多软件是需要在网页上搜索下载的第三方软件。那么这类第三方软件软件除了下载方式不同之外还有什么是和从App store下载的软件有区别的吗?答案是肯定的,那就是这些…...
leetcode174. 地下城游戏(java)
地下城游戏 leetcode174. 地下城游戏题目描述 动态规划解题思路代码 动态规划专题 leetcode174. 地下城游戏 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/dungeon-game 题目描述 恶魔们抓住了公主并将她关在了地下城 …...
信号与系统复习笔记——傅里叶变换
信号与系统复习笔记——傅里叶变换 周期信号的傅里叶级数表示 特征函数 假设LTI系统的输入为 x ( t ) e s t x(t) e^{st} x(t)est 输出为: y ( t ) e s t ∗ h ( t ) ∫ − ∞ ∞ e s ( t − τ ) h ( τ ) d τ e s t ∫ − ∞ ∞ e − s τ h ( τ ) d…...
Allegor17.2版本WIN11系统CIS配置提示错误解决方案
错误提示: ERROR(ORCIS-6250): Unable to continue. Database access failed. Contact the database administrator to correct the following error(s), and then retry. ODBC Error Code: -1 Description: 在指定的 DSN 中,驱动程序和应用程序之间的体…...
Java设计模式七大原则-合成聚合复用原则
🧑💻作者:猫十二懿 ❤️🔥账号:CSDN 、掘金 、个人博客 、Github 🎉公众号:猫十二懿 合成-聚合复用原则 1、合成-聚合复用原则介绍 合成/聚合复用原则(Composition/Aggregatio…...
SOFA Weekly|可信基础设施技术分论坛、Layotto 社区会议回顾与预告、社区本周贡献...
SOFA WEEKLY | 每周精选 筛选每周精华问答,同步开源进展 欢迎留言互动~ SOFAStack(Scalable Open Financial Architecture Stack)是蚂蚁集团自主研发的金融级云原生架构,包含了构建金融级云原生架构所需的各个组件&am…...
Melody 监控(四十九)
当新的世界出现,请立即向他奔去 上一章简单介绍了Spring Boot Actuator详解(四十八), 如果没有看过,请观看上一章 一. JavaMelody 一.一 什么是 Java Melody JavaMelody是一个方便的Java或JavaEE Web 应用程序监控工具。 它允许自动存储由 Web 应用程序的实际操…...
Shell脚本管道符常用搭配命令
1.sort sort命令——以行为单位对文件内容进行排序,也可以根据不同的数据类型来排序比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出。 sort [选项] 文件名 cat file | sort [选项] 常用选项 选项作用-n按照数字进行…...
基于html+mysql+Spring+mybatis+Springboot的Springboot宠物医院管理系统
运行环境: 最好是java jdk 1.8,我在这个平台上运行的。其他版本理论上也可以。 IDE环境: Eclipse,Myeclipse,IDEA或者Spring Tool Suite都可以,如果编译器的版本太低,需要升级下编译器,不要弄太低的版本 tomcat服务器环…...
算法模板(3):搜索(5):其他
搜索 模拟退火 模拟退火一个很关键的是,看看枚举到每一个方案是不是可能的。 3167. 星星还是树 在二维平面上有 n 个点,第 i 个点的坐标为 ( x i , y i ) (x_i,y_i) (xi,yi)。请你找出一个点,使得该点到这 n 个点的距离之和最小。这…...
AWS CodeWhisperer 心得体会:安装与使用
大家好,今天我要和大家分享一下我在使用 AWS CodeWhisperer 这个工具时的心得体会。首先,让我们了解一下什么是 AWS CodeWhisperer。 什么是 AWS CodeWhisperer? AWS CodeWhisperer 是一个用于帮助开发者在 AWS 云平台上更轻松地编写、测试…...
高级查询 — 子查询
关于嵌套查询(子查询) 1.概述 子查询是在一个查询中嵌套另一个查询的查询语句。内部查询从外部查询或数据库中提取数据,然后使用这些数据来执行内部查询。出现在其他语句中的 select 语句,称为嵌套查询或子查询。外部的查询语句…...
霍夫变换(Hough Transform)
文章目录 1. 什么是霍夫变换2. 霍夫直线检测2.1 霍夫直线检测的具体步骤2.2 霍夫直线检测的优缺点2.3 OpenCV中霍夫直线检测的应用2.3.1 标准霍夫检测2.3.2 概率霍夫检测 3. 霍夫圆检测4. 源码仓库地址 1. 什么是霍夫变换 霍夫变换(Hough Transform)是图像处理中的一种特征提取…...
【每日挠头算法题(2)】压缩字符串|仅执行一次字符串交换能否使两个字符串相等
文章目录 一、压缩字符串思路 二、仅执行一次字符串交换能否使两个字符串相等思路1:计数法思路2:模拟法 总结 一、压缩字符串 点我直达~ 思路 使用双指针法 大致过程如下: 使用双指针,分别读(read)&…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
Mac flutter环境搭建
一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...
Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
