当前位置: 首页 > news >正文

java八股文-并发篇

并发篇

在这里插入图片描述

1. 线程状态

要求

  • 掌握 Java 线程六种状态
  • 掌握 Java 线程状态转换
  • 能理解五种状态与六种状态两种说法的区别

六种状态及转换
在这里插入图片描述

分别是

  • 新建
    • 当一个线程对象被创建,但还未调用 start 方法时处于新建状态
    • 此时未与操作系统底层线程关联
  • 可运行
    • 调用了 start 方法,就会由新建进入可运行
    • 此时与底层线程关联,由操作系统调度执行
  • 终结
    • 线程内代码已经执行完毕,由可运行进入终结
    • 此时会取消与底层线程关联
  • 阻塞
    • 获取锁失败后,由可运行进入 Monitor 的阻塞队列阻塞,此时不占用 cpu 时间
    • 当持锁线程释放锁时,会按照一定规则唤醒阻塞队列中的阻塞线程,唤醒后的线程进入可运行状态
  • 等待
    • 当获取锁成功后,但由于条件不满足,调用了 wait() 方法,此时从可运行状态释放锁进入 Monitor 等待集合等待,同样不占用 cpu 时间
    • 当其它持锁线程调用 notify() 或 notifyAll() 方法,会按照一定规则唤醒等待集合中的等待线程,恢复为可运行状态
  • 有时限等待
    • 当获取锁成功后,但由于条件不满足,调用了 wait(long) 方法,此时从可运行状态释放锁进入 Monitor 等待集合进行有时限等待,同样不占用 cpu 时间
    • 当其它持锁线程调用 notify() 或 notifyAll() 方法,会按照一定规则唤醒等待集合中的有时限等待线程,恢复为可运行状态,并重新去竞争锁
    • 如果等待超时,也会从有时限等待状态恢复为可运行状态,并重新去竞争锁
    • 还有一种情况是调用 sleep(long) 方法也会从可运行状态进入有时限等待状态,但与 Monitor 无关,不需要主动唤醒,超时时间到自然恢复为可运行状态

其它情况(只需了解)

  • 可以用 interrupt() 方法打断等待有时限等待的线程,让它们恢复为可运行状态
  • park,unpark 等方法也可以让线程等待和唤醒

五种状态

五种状态的说法来自于操作系统层面的划分

在这里插入图片描述

  • 运行态:分到 cpu 时间,能真正执行线程内代码的
  • 就绪态:有资格分到 cpu 时间,但还未轮到它的
  • 阻塞态:没资格分到 cpu 时间的
    • 涵盖了 java 状态中提到的阻塞等待有时限等待
    • 多出了阻塞 I/O,指线程在调用阻塞 I/O 时,实际活由 I/O 设备完成,此时线程无事可做,只能干等
  • 新建与终结态:与 java 中同名状态类似,不再啰嗦

2. 线程池(高频)

在这里插入图片描述

要求

  • 掌握线程池的 7 大核心参数(含义、作用)

  • 线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。

  • 总体来说,线程池有如下的优势:

    1. 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

    2. 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

    3. 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

  • 线程池的使用
    线程池的真正实现类是 ThreadPoolExecutor

七大参数

  1. corePoolSize 核心线程数目 - 池中会保留的最多线程数
  2. maximumPoolSize 最大线程数目 - 核心线程+救急线程的最大数目
  3. keepAliveTime 生存时间 - 救急线程的生存时间,生存时间内没有新任务,此线程资源会释放
  4. unit 时间单位 - 救急线程的生存时间单位,如秒、毫秒等
  5. workQueue - 当没有空闲核心线程时,新来任务会加入到此队列排队,队列满会创建救急线程执行任务
  6. threadFactory 线程工厂 - 可以定制线程对象的创建,例如设置线程名字、是否是守护线程等
  7. handler 拒绝策略 - 当所有线程都在繁忙,workQueue 也放满时,会触发拒绝策略
    1. 抛异常 java.util.concurrent.ThreadPoolExecutor.AbortPolicy
    2. 由调用者执行任务 java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy
    3. 丢弃任务 java.util.concurrent.ThreadPoolExecutor.DiscardPolicy
    4. 丢弃最早排队任务 java.util.concurrent.ThreadPoolExecutor.DiscardOldestPolicy

核心线程:执行完任务后仍然要保留在线程池中
救急线程:执行完任务之后没有什么作用了不需要保留在线程池中

在这里插入图片描述

代码说明

day02.TestThreadPoolExecutor 以较为形象的方式演示了线程池的核心组成
在这里插入图片描述

3. wait vs sleep(高频)

要求

  • 能够说出二者区别

一个共同点,三个不同点

共同点

  • wait() ,wait(long) 和 sleep(long) 的效果都是让当前线程暂时放弃 CPU 的使用权,进入阻塞状态

不同点

  • 方法归属不同

    • sleep(long) 是 Thread 的静态方法
    • 而 wait(),wait(long) 都是 Object 的成员方法,每个对象都有
  • 醒来时机不同

    • 执行 sleep(long) 和 wait(long) 的线程都会在等待相应毫秒后醒来
    • wait(long) 和 wait() 还可以被 notify 唤醒,wait() 如果不唤醒就一直等下去
    • 它们都可以被打断唤醒
  • 锁特性不同(重点)

    • wait 方法的调用必须先获取 wait 对象的锁,而 sleep 则无此限制
    • wait 方法执行后会释放对象锁,允许其它线程获得该对象锁(我放弃 cpu,但你们还可以用)
    • 而 sleep 如果在 synchronized 代码块中执行,并不会释放对象锁(我放弃 cpu,你们也用不了)

4. lock vs synchronized

要求

  • 掌握 lock 与 synchronized 的区别
  • 理解 ReentrantLock 的公平、非公平锁
  • 理解 ReentrantLock 中的条件变量

三个层面

不同点

  • 语法层面
    • synchronized 是关键字,源码在 jvm 中,用 c++ 语言实现
    • Lock 是接口,源码由 jdk 提供,用 java 语言实现
    • 使用 synchronized 时,退出同步代码块锁会自动释放,而使用 Lock 时,需要手动调用 unlock 方法释放锁
  • 功能层面
    • 二者均属于悲观锁、都具备基本的互斥、同步、锁重入功能
    • Lock 提供了许多 synchronized 不具备的功能,例如获取等待状态、公平锁、可打断、可超时、多条件变量
    • Lock 有适合不同场景的实现,如 ReentrantLock, ReentrantReadWriteLock
  • 性能层面
    • 在没有竞争时,synchronized 做了很多优化,如偏向锁、轻量级锁,性能不赖
    • 在竞争激烈时,Lock 的实现通常会提供更好的性能

公平锁

  • 公平锁的公平体现
    • 已经处在阻塞队列中的线程(不考虑超时)始终都是公平的,先进先出
    • 公平锁是指未处于阻塞队列中的线程来争抢锁,如果队列不为空,则老实到队尾等待
    • 非公平锁是指未处于阻塞队列中的线程来争抢锁,与队列头唤醒的线程去竞争,谁抢到算谁的
  • 公平锁会降低吞吐量,一般不用

条件变量

  • ReentrantLock 中的条件变量功能类似于普通 synchronized 的 wait,notify,用在当线程获得锁后,发现条件不满足时,临时等待的链表结构
  • 与 synchronized 的等待集合不同之处在于,ReentrantLock 中的条件变量可以有多个,可以实现更精细的等待、唤醒控制

代码说明

  • day02.TestReentrantLock 用较为形象的方式演示 ReentrantLock 的内部结构

5. volatile

在这里插入图片描述

要求

  • 掌握线程安全要考虑的三个问题
  • 掌握 volatile 能解决哪些问题

原子性

  • 起因:多线程下,不同线程的指令发生了交错导致的共享变量的读写混乱(看上去的一条java指令 在底层可能也是多条操作)
  • 解决:用悲观锁或乐观锁解决(sync…Lock),volatile 并不能解决原子性
    在这里插入图片描述

可见性

  • 起因:由于编译器优化、或缓存优化、或 CPU 指令重排序优化导致的对共享变量所做的修改另外的线程看不到
  • 解决:用 volatile 修饰共享变量,能够防止编译器等优化发生,让一个线程对共享变量的修改对另一个线程可见

有序性

  • 起因:由于编译器优化、或缓存优化、或 CPU 指令重排序优化导致指令的实际执行顺序与编写顺序不一致
  • 解决:用 volatile 修饰共享变量会在读、写共享变量时加入不同的屏障,阻止其他读写操作越过屏障,从而达到阻止重排序的效果
  • 注意:
    • volatile 变量写加的屏障是阻止上方其它写操作越过屏障排到 volatile 变量写之下
    • volatile 变量读加的屏障是阻止下方其它读操作越过屏障排到 volatile 变量读之上
    • volatile 读写加入的屏障只能防止同一线程内的指令重排

代码说明

  • day02.threadsafe.AddAndSubtract 演示原子性
  • day02.threadsafe.ForeverLoop 演示可见性
    • 注意:本例经实践检验是编译器优化导致的可见性问题
  • day02.threadsafe.Reordering 演示有序性
    • 需要打成 jar 包后测试
  • 请同时参考视频讲解

6. 悲观锁 vs 乐观锁

要求

  • 掌握悲观锁和乐观锁的区别

对比悲观锁与乐观锁

  • 悲观锁的代表是 synchronized 和 Lock 锁

    • 其核心思想是【线程只有占有了锁,才能去操作共享变量,每次只有一个线程占锁成功,获取锁失败的线程,都得停下来等待】
    • 线程从运行到阻塞、再从阻塞到唤醒,涉及线程上下文切换,如果频繁发生,影响性能
    • 实际上,线程在获取 synchronized 和 Lock 锁时,如果锁已被占用,都会做几次重试操作,减少阻塞的机会
  • 乐观锁的代表是 AtomicInteger,使用 cas 来保证原子性

    • 其核心思想是【无需加锁,每次只有一个线程能成功修改共享变量,其它失败的线程不需要停止,不断重试直至成功】
    • 由于线程一直运行,不需要阻塞,因此不涉及线程上下文切换
    • 它需要多核 cpu 支持,且线程数不应超过 cpu 核数

代码说明

  • day02.SyncVsCas 演示了分别使用乐观锁和悲观锁解决原子赋值
  • 请同时参考视频讲解

7. Hashtable vs ConcurrentHashMap

要求

  • 掌握 Hashtable 与 ConcurrentHashMap 的区别
  • 掌握 ConcurrentHashMap 在不同版本的实现区别

更形象的演示,见资料中的 hash-demo.jar,运行需要 jdk14 以上环境,进入 jar 包目录,执行下面命令

java -jar --add-exports java.base/jdk.internal.misc=ALL-UNNAMED hash-demo.jar

Hashtable 对比 ConcurrentHashMap

  • Hashtable 与 ConcurrentHashMap 都是线程安全的 Map 集合
  • Hashtable 并发度低,整个 Hashtable 对应一把锁,同一时刻,只能有一个线程操作它
  • ConcurrentHashMap 并发度高,整个 ConcurrentHashMap 对应多把锁,只要线程访问的是不同锁,那么不会冲突

ConcurrentHashMap 1.7

  • 数据结构:Segment(大数组) + HashEntry(小数组) + 链表,每个 Segment 对应一把锁,如果多个线程访问不同的 Segment,则不会冲突
  • 并发度:Segment 数组大小即并发度,决定了同一时刻最多能有多少个线程并发访问。Segment 数组不能扩容,意味着并发度在 ConcurrentHashMap 创建时就固定了
  • 索引计算
    • 假设大数组长度是 2 m 2^m 2m,key 在大数组内的索引是 key 的二次 hash 值的高 m 位
    • 假设小数组长度是 2 n 2^n 2n,key 在小数组内的索引是 key 的二次 hash 值的低 n 位
  • 扩容:每个小数组的扩容相对独立,小数组在超过扩容因子时会触发扩容,每次扩容翻倍
  • Segment[0] 原型:首次创建其它小数组时,会以此原型为依据,数组长度,扩容因子都会以原型为准

ConcurrentHashMap 1.8

  • 数据结构:Node 数组 + 链表或红黑树,数组的每个头节点作为锁,如果多个线程访问的头节点不同,则不会冲突。首次生成头节点时如果发生竞争,利用 cas 而非 syncronized,进一步提升性能
  • 并发度:Node 数组有多大,并发度就有多大,与 1.7 不同,Node 数组可以扩容
  • 扩容条件:Node 数组满 3/4 时就会扩容
  • 扩容单位:以链表为单位从后向前迁移链表,迁移完成的将旧数组头节点替换为 ForwardingNode
  • 扩容时并发 get
    • 根据是否为 ForwardingNode 来决定是在新数组查找还是在旧数组查找,不会阻塞
    • 如果链表长度超过 1,则需要对节点进行复制(创建新节点),怕的是节点迁移后 next 指针改变
    • 如果链表最后几个元素扩容后索引不变,则节点无需复制
  • 扩容时并发 put
    • 如果 put 的线程与扩容线程操作的链表是同一个,put 线程会阻塞
    • 如果 put 的线程操作的链表还未迁移完成,即头节点不是 ForwardingNode,则可以并发执行
    • 如果 put 的线程操作的链表已经迁移完成,即头结点是 ForwardingNode,则可以协助扩容
  • 与 1.7 相比是懒惰初始化
  • capacity 代表预估的元素个数,capacity / factory 来计算出初始数组大小,需要贴近 2 n 2^n 2n
  • loadFactor 只在计算初始数组大小时被使用,之后扩容固定为 3/4
  • 超过树化阈值时的扩容问题,如果容量已经是 64,直接树化,否则在原来容量基础上做 3 轮扩容

8. ThreadLocal

要求

  • 掌握 ThreadLocal 的作用与原理
  • 掌握 ThreadLocal 的内存释放时机

作用

  • ThreadLocal 可以实现【资源对象】的线程隔离,让每个线程各用各的【资源对象】,避免争用引发的线程安全问题
  • ThreadLocal 同时实现了线程内的资源共享

原理

每个线程内有一个 ThreadLocalMap 类型的成员变量,用来存储资源对象

  • 调用 set 方法,就是以 ThreadLocal 自己作为 key,资源对象作为 value,放入当前线程的 ThreadLocalMap 集合中
  • 调用 get 方法,就是以 ThreadLocal 自己作为 key,到当前线程中查找关联的资源值
  • 调用 remove 方法,就是以 ThreadLocal 自己作为 key,移除当前线程关联的资源值

ThreadLocalMap 的一些特点

  • key 的 hash 值统一分配
  • 初始容量 16,扩容因子 2/3,扩容容量翻倍
  • key 索引冲突后用开放寻址法解决冲突

弱引用 key

ThreadLocalMap 中的 key 被设计为弱引用,原因如下

  • Thread 可能需要长时间运行(如线程池中的线程),如果 key 不再使用,需要在内存不足(GC)时释放其占用的内存

内存释放时机

  • 被动 GC 释放 key
    • 仅是让 key 的内存释放,关联 value 的内存并不会释放
  • 懒惰被动释放 value
    • get key 时,发现是 null key,则释放其 value 内存
    • set key 时,会使用启发式扫描,清除临近的 null key 的 value 内存,启发次数与元素个数,是否发现 null key 有关
  • 主动 remove 释放 key,value
    • 会同时释放 key,value 的内存,也会清除临近的 null key 的 value 内存
    • 推荐使用它,因为一般使用 ThreadLocal 时都把它作为静态变量(即强引用),因此无法被动依靠 GC 回收

相关文章:

java八股文-并发篇

并发篇 1. 线程状态 要求 掌握 Java 线程六种状态掌握 Java 线程状态转换能理解五种状态与六种状态两种说法的区别 六种状态及转换 分别是 新建 当一个线程对象被创建,但还未调用 start 方法时处于新建状态此时未与操作系统底层线程关联 可运行 调用了 start …...

Elasticsearch8.6.0安装

Elasticsearch 8.5.0 安装 Elasticsearch 简介Elasticsearch 8.6.0 安装创建网络拉取镜像运行镜像设置密码修改kibana配置绑定ES代码绑定:手动绑定: 配置ik分词器扩展词词典停用词词典 Elasticsearch 简介 Elasticsearch(ES) 是一…...

Vue - 第五天 动态组件 插槽 自定义指令

动态组件& 插槽& 自定义指令 一、动态组件1.什么是动态组件2.如何实现动态组件渲染3.使用 keep-alive 保持状态4. keep-alive 对应的生命周期函数5. keep-alive 的 include 属性6.动态展示左右组件7.例子 二、插槽1.什么是插槽2.体验插槽的基础用法2.1 没有预留插槽的内…...

如何开展web自动化测试

Web 自动化是指使用测试脚本在 Web 上自动执行任务。它包括填写表单、导航网页、单击链接或按钮以及从网站中提取数据等任务。 它可用于各种目的,例如自动输入数据或测试网站的功能。有几种工具和编程语言可用于自动化网络上的任务,包括Selenium&#x…...

【博学谷学习记录】超强总结,用心分享 | 架构师 Maven学习总结

文章目录 Maven基本1.什么是Maven2.为什么用Maven?(1)jar 包的规模(2) jar 包的来源(3)jar 包之间的依赖关系 3.Maven目录结构4.maven仓库配置 Pom层次Pom文件简介Super POM 依赖管理1 依赖传递2 传递性依…...

PPT里文字太多如何排版-一口气教你7种布局瞬间让PPT高大上起来

简介 这是我们学PPT处于初级到中级进化阶段常做的一件事,就是拿了这种纯文字类版面来做布局。而且这种文字都是政企类的、相当苦涩难懂、无法创意。 因此我们会要求使用7种排版来优化这个版面。这和达芳奇画鸡蛋很像,这样的练习需要坚持一段时间,就是拿了纯文字来beautifu…...

Whistle(基于 Node 实现的跨平台抓包调试工具)的使用

Whistle(基于 Node 实现的跨平台抓包调试工具)的使用 基于Node实现的跨平台抓包调试工具 可以劫持网络请求,并进行请求和响应的修改,来提高我们的开发调试效率 1.一键安装(装包/证书) npm i -g whistle && w2 start --init 证书的问题 安装…...

数学模型:Python实现非线性规划

上篇文章:整数规划 文章摘要:非线性规划的Python实现。 参考书籍:数学建模算法与应用(第3版)司守奎 孙玺菁。 PS:只涉及了具体实现并不涉及底层理论。学习底层理论以及底层理论实现:可以参考1.最优化模型与算法——基于…...

Docker网路模型(四)使用 bridge 网络

使用 bridge 网络 在计算机网络中,一个 bridge(网桥)是一个链路层设备,负责在不同的网段之间转发信息。 bridge 可以是真实的硬件设备也可以是由宿主机底层提供的软件模拟设备。 在 Docker 中,bridge 网络使用了软件…...

数据结构与算法之美 | 排序(2)

归并排序(Merge Sort) 基本思想: 如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。 def merge_sort…...

【外企面试系列】必备口语短语与例句 - A系列

a big headache令人头痛的事情 I have a big headache from all the noise. (我因为噪音而头痛。)The paperwork is a big headache for me. (对我来说,文书工作是件头痛的事情。) a fraction of 一部分 She ate only a fraction of her meal. (她只吃了一部分饭…...

Java使用Opencv进行大图找小图并使用其找图功能进行bilibili视频下载案例

Java使用Opencv进行大图找小图并使用其找图功能进行bilibili视频下载案例 一、Opencv大图找小图说明二、Opencv的window安装1.下载windows下的安装包2.安装3.Java中Opencv加载测试 三、Java中通过Opencv进行模板匹配大图找小图四、进行多图查找五:案例下载bilibili视…...

肠道健康从核心菌属开始:肠道菌群的关键

谷禾健康 5月29日,是世界肠道健康日。肠道是人体最重要的消化系统之一,与人体健康紧密相关。而肠道菌群作为肠道重要组成部分,在肠道健康中发挥着重要的作用。 编辑​ 由于基因、环境、饮食、药物等因素的影响,每个人的肠道菌群都…...

深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用

大家好,我是微学AI,今天给大家介绍一下深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用,NASNet是由Google Brain团队开发的一种具有自动搜索能力的神经网络模型,利用强化学习和进化算法等技术来自动地搜索最优的神经网络架构。NASNet模型的设计灵感…...

碳排放预测模型 | Python实现基于机器学习回归分析的碳排放预测模型——随机森林、决策树、KNN 和多层感知器 (MLP) 预测分析

文章目录 效果一览文章概述研究内容环境准备源码设计KNNRandom ForestDecision TreeMLPModel Evaluation学习总结参考资料效果一览...

人体检测技术之毫米波雷达

人体检测技术之毫米波雷达 1.概述 智能人脸/视频锁领域的人体检测需求是要求远距离达到1m左右即可,一旦在此距离内检测人,则锁唤醒进行人脸识别,视频录制等操作。所以,人体检测技术非常关键。 选型主要是几个维度: 1.支持检测的距离范围,能否准确输出距离信息 2.支持…...

“Chain of Thought Reasoning“ 和 “Chain Prompts“ 是什么

"Chain of Thought Reasoning" 和 "Chain Prompts" 是什么 1. "Chain Prompts" 是什么2. “Chain of Thought Reasoning” 是什么 1. “Chain Prompts” 是什么 “Chain Prompts” 是指一系列相关的提示,它们之间有逻辑上的联系和依赖关系。用户…...

signal

读信号,dqs 是对齐到dq的边沿, 写信号,dqs 的边沿是对到中间的。 spec 就是这样规定的。我们在dq的最中间的采样,肯定是最安全的。 dqs 是对齐到dq的边沿 , 在silicon 内部,还是通过移位完成的。 rl: re…...

深度研究微软的资产负债表和财务状况以及未来投资价值

来源:猛兽财经 作者:猛兽财经 微软股票的关键指标 猛兽财经认为,微软公布的2023财年第三季度财务业绩,有三个关键指标值得投资者关注。 第一个关键指标是利息收入。微软的利息收入目前已经同比增长了44%,从2022财年第…...

Mac电脑删除第三方软件工具CleanMyMac X

经常使用Mac的人都知道,Mac除了可以在AppStore下载应用程序,还有许多软件是需要在网页上搜索下载的第三方软件。那么这类第三方软件软件除了下载方式不同之外还有什么是和从App store下载的软件有区别的吗?答案是肯定的,那就是这些…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...