当前位置: 首页 > news >正文

数据结构与算法之美 | 排序(2)

归并排序(Merge Sort)

基本思想

如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

def merge_sort(array):'''使用归并排序算法对数组进行排序参数:array(list): 待排序数组返回值:array(list): 已排序数组'''if array is None:return []if len(array) == 1:return array# 检查数组长度是否大于1if len(array) > 1:# 将数组分成两半mid = len(array) // 2right_array = array[mid:]left_array = array[:mid]# 递归调用归并排序对左右两半进行排序merge_sort(right_array)merge_sort(left_array)# 初始化左子数组、右子数组和合并后的数组的索引位置left_index = right_index = merge_index = 0# 合并左右两个有序数组while left_index < len(left_array) and right_index < len(right_array):if left_array[left_index] < right_array[right_index]:array[merge_index] = left_array[left_index]left_index += 1else:array[merge_index] = right_array[right_index]right_index += 1merge_index += 1# 在合并排序过程中,左右两个子数组已经是有序的,而剩余的元素必然是较大(或较小)的元素,# 我们需要将它们放入原数组的正确位置以保持整体有序    # 首先,将左侧剩余元素复制到原数组中while left_index < len(left_array):array[merge_index] = left_array[left_index]left_index += 1merge_index += 1# 将右侧剩余元素复制到原数组中while right_index < len(right_array):array[merge_index] = right_array[right_index]right_index += 1merge_index += 1return arrayarray = [6, 5, 12, 10, 9, 1]
print(merge_sort(array)) # Output: [1, 5, 6, 9, 10, 12]

归并排序算法评价

  • 执行效率:最好情况时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),最坏情况时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),平均情况时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

  • 内存消耗:不是一个原地排序算法,空间复杂度为 O ( n ) O(n) O(n)

  • 稳定性:是一个稳定的排序算法

快速排序(Quick Sort)

基本思想

  • 如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)
  • 我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。
  • 经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。
  • 根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

使用Python代码实现:

def partition(arr, low, high):"""将数组划分为两部分,左侧的元素小于等于基准点,右侧的元素大于基准点。参数:arr (list): 待划分的数组low (int): 划分区间的起始索引high (int): 划分区间的结束索引返回:pivot_idx(int): 基准点的索引"""i = low - 1pivot = arr[high]  # 选择最后一个元素作为基准点for j in range(low, high):if arr[j] <= pivot:i += 1# 将小于等于基准点的元素放在左侧arr[i], arr[j] = arr[j], arr[i]# 将基准点放置在正确的位置arr[i + 1], arr[high] = arr[high], arr[i + 1]pivot_idx = i + 1return pivot_idxdef quick_sort(arr, low, high):"""实现一个原地快速排序算法参数:arr (list): 待排序列表low (int): 列表的起始索引high (int): 列表的结束索引返回:None"""if low < high:pivot_index = partition(arr, low, high)quick_sort(arr, low, pivot_index - 1)quick_sort(arr, pivot_index + 1, high)# 测试用例
arr = [6, 5, 12, 10, 9, 1]
quick_sort(arr, 0, len(arr) - 1)
print(arr)

快速排序算法评价

  • 执行效率:最好情况时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),最坏情况时间复杂度为 O ( n 2 ) O(n^2) O(n2),平均情况时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

  • 内存消耗:是一个原地排序算法,空间复杂度为 O ( l o g n ) O(logn) O(logn)

  • 稳定性:不是一个稳定的排序算法

参考文献

  • 王争. 排序(下):如何用快排思想在O(n)内查找第K大元素?极客时间. 2018

相关文章:

数据结构与算法之美 | 排序(2)

归并排序&#xff08;Merge Sort&#xff09; 基本思想&#xff1a; 如果要排序一个数组&#xff0c;我们先把数组从中间分成前后两部分&#xff0c;然后对前后两部分分别排序&#xff0c;再将排好序的两部分合并在一起&#xff0c;这样整个数组就都有序了。 def merge_sort…...

【外企面试系列】必备口语短语与例句 - A系列

a big headache令人头痛的事情 I have a big headache from all the noise. (我因为噪音而头痛。)The paperwork is a big headache for me. (对我来说&#xff0c;文书工作是件头痛的事情。) a fraction of 一部分 She ate only a fraction of her meal. (她只吃了一部分饭…...

Java使用Opencv进行大图找小图并使用其找图功能进行bilibili视频下载案例

Java使用Opencv进行大图找小图并使用其找图功能进行bilibili视频下载案例 一、Opencv大图找小图说明二、Opencv的window安装1.下载windows下的安装包2.安装3.Java中Opencv加载测试 三、Java中通过Opencv进行模板匹配大图找小图四、进行多图查找五&#xff1a;案例下载bilibili视…...

肠道健康从核心菌属开始:肠道菌群的关键

谷禾健康 5月29日&#xff0c;是世界肠道健康日。肠道是人体最重要的消化系统之一&#xff0c;与人体健康紧密相关。而肠道菌群作为肠道重要组成部分&#xff0c;在肠道健康中发挥着重要的作用。 编辑​ 由于基因、环境、饮食、药物等因素的影响&#xff0c;每个人的肠道菌群都…...

深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用

大家好,我是微学AI,今天给大家介绍一下深度学习实战37-NASNet(具有自动搜索能力的神经网络模型)的搭建与实战应用,NASNet是由Google Brain团队开发的一种具有自动搜索能力的神经网络模型,利用强化学习和进化算法等技术来自动地搜索最优的神经网络架构。NASNet模型的设计灵感…...

碳排放预测模型 | Python实现基于机器学习回归分析的碳排放预测模型——随机森林、决策树、KNN 和多层感知器 (MLP) 预测分析

文章目录 效果一览文章概述研究内容环境准备源码设计KNNRandom ForestDecision TreeMLPModel Evaluation学习总结参考资料效果一览...

人体检测技术之毫米波雷达

人体检测技术之毫米波雷达 1.概述 智能人脸/视频锁领域的人体检测需求是要求远距离达到1m左右即可,一旦在此距离内检测人,则锁唤醒进行人脸识别,视频录制等操作。所以,人体检测技术非常关键。 选型主要是几个维度: 1.支持检测的距离范围,能否准确输出距离信息 2.支持…...

“Chain of Thought Reasoning“ 和 “Chain Prompts“ 是什么

"Chain of Thought Reasoning" 和 "Chain Prompts" 是什么 1. "Chain Prompts" 是什么2. “Chain of Thought Reasoning” 是什么 1. “Chain Prompts” 是什么 “Chain Prompts” 是指一系列相关的提示,它们之间有逻辑上的联系和依赖关系。用户…...

signal

读信号&#xff0c;dqs 是对齐到dq的边沿&#xff0c; 写信号&#xff0c;dqs 的边沿是对到中间的。 spec 就是这样规定的。我们在dq的最中间的采样&#xff0c;肯定是最安全的。 dqs 是对齐到dq的边沿 &#xff0c; 在silicon 内部&#xff0c;还是通过移位完成的。 rl: re…...

深度研究微软的资产负债表和财务状况以及未来投资价值

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 微软股票的关键指标 猛兽财经认为&#xff0c;微软公布的2023财年第三季度财务业绩&#xff0c;有三个关键指标值得投资者关注。 第一个关键指标是利息收入。微软的利息收入目前已经同比增长了44%&#xff0c;从2022财年第…...

Mac电脑删除第三方软件工具CleanMyMac X

经常使用Mac的人都知道&#xff0c;Mac除了可以在AppStore下载应用程序&#xff0c;还有许多软件是需要在网页上搜索下载的第三方软件。那么这类第三方软件软件除了下载方式不同之外还有什么是和从App store下载的软件有区别的吗&#xff1f;答案是肯定的&#xff0c;那就是这些…...

leetcode174. 地下城游戏(java)

地下城游戏 leetcode174. 地下城游戏题目描述 动态规划解题思路代码 动态规划专题 leetcode174. 地下城游戏 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;https://leetcode.cn/problems/dungeon-game 题目描述 恶魔们抓住了公主并将她关在了地下城 …...

信号与系统复习笔记——傅里叶变换

信号与系统复习笔记——傅里叶变换 周期信号的傅里叶级数表示 特征函数 假设LTI系统的输入为 x ( t ) e s t x(t) e^{st} x(t)est 输出为&#xff1a; y ( t ) e s t ∗ h ( t ) ∫ − ∞ ∞ e s ( t − τ ) h ( τ ) d τ e s t ∫ − ∞ ∞ e − s τ h ( τ ) d…...

Allegor17.2版本WIN11系统CIS配置提示错误解决方案

错误提示&#xff1a; ERROR(ORCIS-6250): Unable to continue. Database access failed. Contact the database administrator to correct the following error(s), and then retry. ODBC Error Code: -1 Description: 在指定的 DSN 中&#xff0c;驱动程序和应用程序之间的体…...

Java设计模式七大原则-合成聚合复用原则

&#x1f9d1;‍&#x1f4bb;作者&#xff1a;猫十二懿 ❤️‍&#x1f525;账号&#xff1a;CSDN 、掘金 、个人博客 、Github &#x1f389;公众号&#xff1a;猫十二懿 合成-聚合复用原则 1、合成-聚合复用原则介绍 合成/聚合复用原则&#xff08;Composition/Aggregatio…...

SOFA Weekly|可信基础设施技术分论坛、Layotto 社区会议回顾与预告、社区本周贡献...

SOFA WEEKLY | 每周精选 筛选每周精华问答&#xff0c;同步开源进展 欢迎留言互动&#xff5e; SOFAStack&#xff08;Scalable Open Financial Architecture Stack&#xff09;是蚂蚁集团自主研发的金融级云原生架构&#xff0c;包含了构建金融级云原生架构所需的各个组件&am…...

Melody 监控(四十九)

当新的世界出现&#xff0c;请立即向他奔去 上一章简单介绍了Spring Boot Actuator详解(四十八), 如果没有看过,请观看上一章 一. JavaMelody 一.一 什么是 Java Melody JavaMelody是一个方便的Java或JavaEE Web 应用程序监控工具。 它允许自动存储由 Web 应用程序的实际操…...

Shell脚本管道符常用搭配命令

1.sort sort命令——以行为单位对文件内容进行排序&#xff0c;也可以根据不同的数据类型来排序比较原则是从首字符向后&#xff0c;依次按ASCII码值进行比较&#xff0c;最后将他们按升序输出。 sort [选项] 文件名 cat file | sort [选项] 常用选项 选项作用-n按照数字进行…...

基于html+mysql+Spring+mybatis+Springboot的Springboot宠物医院管理系统

运行环境: 最好是java jdk 1.8&#xff0c;我在这个平台上运行的。其他版本理论上也可以。 IDE环境&#xff1a; Eclipse,Myeclipse,IDEA或者Spring Tool Suite都可以&#xff0c;如果编译器的版本太低&#xff0c;需要升级下编译器&#xff0c;不要弄太低的版本 tomcat服务器环…...

算法模板(3):搜索(5):其他

搜索 模拟退火 模拟退火一个很关键的是&#xff0c;看看枚举到每一个方案是不是可能的。 3167. 星星还是树 在二维平面上有 n 个点&#xff0c;第 i 个点的坐标为 ( x i , y i ) (x_i,y_i) (xi​,yi​)。请你找出一个点&#xff0c;使得该点到这 n 个点的距离之和最小。这…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...