当前位置: 首页 > news >正文

day16 | 104.二叉树的最大深度、111.二叉树的最小深度、 222.完全二叉树的节点个数

目录:

链接

题目链接:

https://leetcode.cn/problems/maximum-depth-of-binary-tree/

https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/

https://leetcode.cn/problems/minimum-depth-of-binary-tree/description/

解题及思路学习

104. 二叉树的最大深度、559. N 叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7]

    3/ \9  20/  \15   7

返回它的最大深度 3 。

思考:之前用层序遍历法得出的最大深度,现在尝试用递归方法求解。

递归三部曲:

  1. 确定递归函数的参数和返回值

2 确定终止条件

  1. 确定单层递归的逻辑

想法是:1、当节点为空的时候,直接返回0。2、传入节点指针,返回该节点的深度。3、每一个节点的深度等于最大的子节点深度+1。所以,直接求左右子树的深度,返回大的+1。

//我靠,我居然写出来了class Solution {
public:int maxDepth(TreeNode* root) {if (root == NULL) return 0;int count_left = 0;int count_right = 0;if(root->left) {count_left = maxDepth(root->left);}if(root->right) {count_right = maxDepth(root->right);}return count_left > count_right ? (count_left + 1) : (count_right + 1);}
};

随想录:二叉树的高度和深度不一样,高度是节点到叶子节点的距离,深度是节点到根节点的距离。二叉树的最大深度等于最大高度。 我的总体思路跟随想录思路一样。

//整体代码class solution {
public:int getdepth(TreeNode* node) {if (node == NULL) return 0;int leftdepth = getdepth(node->left);       // 左int rightdepth = getdepth(node->right);     // 右int depth = 1 + max(leftdepth, rightdepth); // 中return depth;}int maxDepth(TreeNode* root) {return getdepth(root);}
};//精简:
class solution {
public:int maxDepth(TreeNode* root) {if (root == null) return 0;return 1 + max(maxDepth(root->left), maxDepth(root->right));}
};

扩展题目:559. N 叉树的最大深度

思路和之前一样,不同点在于子树多了。如何遍历所有的子树呢?

class Solution {
public:int maxDepth(Node* root) {if (root == NULL) return 0;int depth = 0;for (int i = 0; i < root->children.size(); i++){depth = max(depth, maxDepth(root->children[i]));}return depth + 1;}
};

root->children.size() 可以知道子树的总数。子树是以vector的形式存储的,所有可以通过下标访问每一棵子树。

111. 二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

**说明:**叶子节点是指没有子节点的节点。

示例 1:

!https://assets.leetcode.com/uploads/2020/10/12/ex_depth.jpg

输入:root = [3,9,20,null,null,15,7]
输出:2

思考,这道题之前用层次遍历也做出来了,现在试试递归方法。

随想录:用后续遍历的方式求最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点

什么是叶子节点,左右孩子都为空的节点才是叶子节点! 所以,在处理返回值的时候要分别判断左右子树是否为空。

class Solution {
public:int getDepth(TreeNode* node) {if (node == NULL) return 0;int leftDepth = getDepth(node->left);           // 左int rightDepth = getDepth(node->right);         // 右// 中// 当一个左子树为空,右不为空,这时并不是最低点if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;}   // 当一个右子树为空,左不为空,这时并不是最低点if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;}int result = 1 + min(leftDepth, rightDepth);return result;}int minDepth(TreeNode* root) {return getDepth(root);}
};

迭代法思路很重要,要按照三个步骤来规划。并且处理单层逻辑的时候,要考虑多种状况。

222. 完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

!https://assets.leetcode.com/uploads/2021/01/14/complete.jpg

输入:root = [1,2,3,4,5,6]
输出:6

思考:可以用层次遍历,没遍历一个节点,计数加1;

层次遍历每个节点代码:

class Solution {
public:int countNodes(TreeNode* root) {queue<TreeNode*> que;int result = 0;if (root != NULL) que.push(root);while(!que.empty()){int size = que.size();result += size;for (int i = 0; i < size; i++){TreeNode* node = que.front();que.pop();if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

尝试用递归的方法写一下:

(好像递归方法掌握那三个点之后写起来就变得很容易了)

class Solution {
public:int countNodes(TreeNode* root) {if (root == NULL) return 0;int leftCount = countNodes(root->left);int rightCount = countNodes(root->right);int result = leftCount + rightCount +1;return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(log n),算上了递归系统栈占用的空间

随想录:利用满二叉树的特性(节点数= 2的n次方 -1),先判断左右子树是否是满二叉树,如果是,则直接计算节点。和普通二叉树不同之处,在于当遇到满二叉树的时候也会终止。

class Solution {
public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;TreeNode* left = root->left;TreeNode* right = root->right;int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便while (left) {  // 求左子树深度left = left->left;leftDepth++;}while (right) { // 求右子树深度right = right->right;rightDepth++;}if (leftDepth == rightDepth) {return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0}return countNodes(root->left) + countNodes(root->right) + 1;}
};
  • 时间复杂度:O(log n × log n)
  • 空间复杂度:O(log n)

困难及收获

困难

整体来说,今天的题目不难。

今日收获

对递归的理解更深了,一定要把握三个关键点。

相关文章:

day16 | 104.二叉树的最大深度、111.二叉树的最小深度、 222.完全二叉树的节点个数

目录&#xff1a; 链接 题目链接&#xff1a; https://leetcode.cn/problems/maximum-depth-of-binary-tree/ https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/ https://leetcode.cn/problems/minimum-depth-of-binary-tree/description/ 解题及思路学习 104…...

Spring Boot + Vue3前后端分离实战wiki知识库系统<八>--分类管理功能开发二

接着上一次Spring Boot Vue3 前后端分离 实战 wiki 知识库系统&#xff1c;七&#xff1e;--分类管理功能开发的分类功能继续完善。 分类编辑功能优化&#xff1a; 概述&#xff1a; 现在分类编辑时的界面长这样&#xff1a; 很明显目前的父分类的展现形式不太人性&#xf…...

Python入门(十八)类(一)

类&#xff08;一&#xff09; 1.面向对象概述2.创建和使用类2.1 创建dog类2.2 根据类创建实例2.3 创建多个实例 1.面向对象概述 面向对象编程是最有效的软件编写方法之一。在面向对象编程中&#xff0c;你编写表示现实世界中的事物和情景的类&#xff0c;并基于这些类来创建对…...

c# 从零到精通-定义一个结构

c# 从零到精通-定义一个结构 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Test01 { class Program { public struct Rect//定义一个矩形结构 { public double width;//矩形的宽 public double height;//矩形的高 /// …...

检信ALLEMOTION非接触式心理情绪测评系统

1 名称&#xff1a;检信ALLEMOTION多维度心理情绪测评系统 2 用途&#xff1a;用于群体性人群心理情绪早期筛查&#xff0c;以及个人心理障碍辅助诊断,同时传统心理量表诞生已经100多年历史&#xff0c;在人工智能及大数据推动下&#xff0c;必然推动心理健康行业的产业变革与…...

20道嵌入式经典面试题(附答案)

1.嵌入式系统中经常要用到无限循环&#xff0c;如何用C编写死循环 答&#xff1a;while(1){} 或者 for(;;) 2.程序的局部变量存在于哪里&#xff0c;全局变量存在于哪里&#xff0c;动态申请数据存在于哪里。 答&#xff1a;程序的局部变量存在于栈区&#xff1b;全局变量存在…...

python学习-代码调试器

目录 为什么学习调试器Pycharm Debugger示例所用代码布局调试工具栏 Debug Bar程序控制工具栏 pdb查看源代码 l list查看当前函数源代码 ll longlist打印变量 p查看调用栈w where向上移动当前帧 u up向上移动当前帧 d down运行当前行代码,在第一个可以停止的位置停下 s step继续…...

第十一章 综合推理

第十一章 综合推理 第一节 综合推理-排序 题-综合推理-分类1-排序 甲、乙、丙、丁四人的国籍分别为英国、俄国、法国、日本。乙比甲高&#xff0c;丙更矮&#xff1b;英国人比俄国人高&#xff0c;法国人最高&#xff1b;日本人比丁高。 这四个人的国籍是&#xff1a; A.甲…...

嵌入式开发之设置寄存器中指定位

0 Preface/Foreword 嵌入式开发&#xff0c;位操作是常用的运算&#xff0c;读写对应寄存器指定位从而设置不同的功能。 1 设置寄存器中的任意位 1.1 清零 举例&#xff0c;假设一个寄存器名字为FUNCCON&#xff0c;地址为0x00008000,该寄存器长度为4个byte。 #define FUNC…...

第十章 数学相关

第十章 数学相关 第一节 集合 真题&#xff08;2010-53&#xff09;-数学相关-集合-画饼集能力-朴素逻辑 53.参加某国际学术研讨会的 60 名学者中&#xff0c;亚裔学者 31 人&#xff0c;博士 33 人&#xff0c;非亚裔学者中无博士学位的 4 人。根据上述陈述&#xff0c;参…...

数据结构——串(字符串)

文章目录 **一 串的定义和实现****1 定义****2 串的存储结构****2.1 定长顺序存储表示****2.2 堆分配存储表示****2.3 块链存储表示** **3 串的基本操作** **二 串的模式匹配****1 简单的模式匹配算法****2 串的模式匹配算法——KMP算法****2.1 字符串的前缀&#xff0c;后缀和…...

Seata服务端的启动过程 学习记录

1.ServerRunner ServerRunner类实现了CommandLineRunner与DisposableBean接口&#xff0c;将会在Spring容器启动和关闭的时间&#xff0c;分别执行 run 和 destory 方法。 而seata服务端的启动过程&#xff0c;都藏在run方法中 2.整体流程 io.seata.server.Server#start pu…...

Log4J

引言 为什么要用日志? --> 方便调试代码 什么时候用?什么时候不用? ​ 出错调试代码时候用 生产环境下就不需要,就需要删除 怎么用? --> 输出语句 一、Log4J 1.1 介绍 ​ log4j是Apache的一个开放源代码的项目&#xff0c;通过使用log4j&#xff0c;我们可以控…...

【零基础学机器学习 5】机器学习中的分类:什么是分类以及分类模型

&#x1f468;‍&#x1f4bb; 作者简介&#xff1a;程序员半夏 , 一名全栈程序员&#xff0c;擅长使用各种编程语言和框架&#xff0c;如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主. 你可以在各个…...

目标检测算法:Faster-RCNN论文解读

目标检测算法&#xff1a;Faster-RCNN论文解读 前言 ​ 其实网上已经有很多很好的解读各种论文的文章了&#xff0c;但是我决定自己也写一写&#xff0c;当然&#xff0c;我的主要目的就是帮助自己梳理、深入理解论文&#xff0c;因为写文章&#xff0c;你必须把你所写的东西表…...

基于Python的接口自动化-Requests模块

目录 引言 一、模块说明 二、Requests模块快速入门 1 发送简单的请求 2 发送带参数的请求 3 定制header头和cookie 4 响应内容 5 发送post请求 6 超时和代理 三、Requests实际应用 引言 在使用Python进行接口自动化测试时&#xff0c;实现接口请求…...

Vue框架中监测数组变化的方法

在 Vue 中&#xff0c;如果直接对数组进行操作&#xff0c;比如使用下标直接修改元素&#xff0c;数组长度不变时&#xff0c; Vue 是无法监测到这种变化的&#xff0c;导致无法触发视图更新。针对该问题&#xff0c;总结如下解决方法&#xff1a; 一、使用 Vue.js 提供的方法…...

PHP isset()函数使用详解,PHP判断变量是否存在

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 isset 一、判断变量是否存在二、判断变量是否为NUL…...

2021~2022 学年第二学期《信息安全》考试试题(A 卷)

北京信息科技大学 2021~2022 学年第二学期《信息安全》考试试题&#xff08;A 卷&#xff09; 课程所在学院&#xff1a;计算机学院 适用专业班级&#xff1a;计科1901-06&#xff0c;重修 考试形式&#xff1a;(闭卷) 一、选择题&#xff08;本题满分10分,共含10道小题,每小题…...

通俗讲解元学习(Meta-Learning)

元学习通俗的来说&#xff0c;就是去学习如何学习&#xff08;Learning to learn&#xff09;,掌握学习的方法&#xff0c;有时候掌握学习的方法比刻苦学习更重要&#xff01; 下面我们进行详细讲解 1. 从传统机器学习到元学习 传统的机器学中&#xff0c;我们选择一个算法&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

C#中用于控制自定义特性(Attribute)

我们来详细解释一下 [AttributeUsage(AttributeTargets.Class, AllowMultiple false, Inherited false)] 这个 C# 属性。 在 C# 中&#xff0c;Attribute&#xff08;特性&#xff09;是一种用于向程序元素&#xff08;如类、方法、属性等&#xff09;添加元数据的机制。Attr…...