当前位置: 首页 > news >正文

代码随想录二刷 530 二叉搜索树的最小绝对差 98. 验证二叉搜索树 700. 二叉搜索树中的搜索

530 二叉搜索树的最小绝对差

代码如下 

func getMinimumDifference(root *TreeNode) int {

          var pre *TreeNode 

          res := math.MaxInt

          var traverse func(root * TreeNode) 

          traverse = func(root * TreeNode)  {  

                 if root == nil {             

                     return 

                 }

                traverse(root.Left)        定义两个指针,一个pre指针,一个为当前节点的root指针,因为是二叉搜索树,所以用中序遍历是递增序列  

                if pre != nil && root.Val - pre.Val < res {   当前一个节点不为空,那么比较前一个节点和当前节点的值,如果比之前的最小差值小,那么就更新最小差值 

                           res = root.Val - pre.Val

                }

                pre = root    此时将pre指针更新,root指针指向下一个节点

                traverse(root.Right)

                

          }

           traverse(root)

           return res 

}

func min(a,b int) int {

    if a < b {

        return a 

    }else {

        return b 

    }

}

98. 验证二叉搜索树

代码如下

func isValidBST(root *TreeNode) bool {

         var pre *TreeNode 

         var traverse func(root *TreeNode) bool 

         traverse = func(root *TreeNode) bool {

             if root == nil {         如果是空节点也是二叉搜索树 

                 return true 

             }

             leftres := traverse(root.Left)    遍历左子树,并收集左子树的结果

             if pre != nil && root.Val <= pre.Val {  因为用中序遍历二叉搜索树是一个升序序列。如果前一个节点比当前节点大,说明不是二叉搜索树

                 return false 

             }

             pre = root      更新pre指针,并且root指向下一个节点 

             rightres := traverse(root.Right)

             return rightres && leftres    返回左子树和右子树的结果 

         }

         return traverse(root)

}

700. 二叉搜索树中的搜索 

代码如下

func searchBST(root *TreeNode, val int) *TreeNode {

               if root == nil || root.Val == val {  

                   return root 

               }

               if root.Val > val {  利用二叉搜索树的特点,如果当前节点值大于要找的值,则向当前节点的左子树寻找

                  return searchBST(root.Left,val)

               }

               return searchBST(root.Right,val)  如果当前节点的值小于要找的值,则向当前节点的右子树寻找 

}

相关文章:

代码随想录二刷 530 二叉搜索树的最小绝对差 98. 验证二叉搜索树 700. 二叉搜索树中的搜索

530 二叉搜索树的最小绝对差 代码如下 func getMinimumDifference(root *TreeNode) int { var pre *TreeNode res : math.MaxInt var traverse func(root * TreeNode) traverse func(root * TreeNode) { if root nil { return } traverse(root.Left) …...

Docker安装——CentOS7.6(详细版)

ps:docker官网 在 CentOS 上安装 Docker 引擎 |官方文档 &#xff08;&#xff09; 一、确定版本&#xff08;必须是7以上版本&#xff09; cat /etc/redhat-release 二、卸载旧版本&#xff08;或者之前装过&#xff0c;没有安装过就不用管了&#xff09; &#xff08;root用…...

论信息系统项目的整体管理(范文)

论信息系统项目的整体管理&#xff08;范文&#xff09; 【摘要】 2016年10月&#xff0c;XX省卫生健康委启动了XX省分级转诊服务平台建设项目&#xff0c;我在项目中担任项目经理&#xff0c;负责项目的全面管理工作。该平台作为全省上下级医院转诊的信息化通道&#xff0c;…...

【音视频处理】音频编码AAC详解,低码率提高音质?

大家好&#xff0c;欢迎来到停止重构的频道。 本期我们介绍音频编码格式AAC。 AAC是音频最常用的编码格式之一&#xff0c;几乎所有的播放器都支持这个编码格式。 其他音频编码格式都是类似的&#xff0c;只是某些细节存在差别&#xff0c;如压缩算法、某些音频参数存在限制…...

逆函数学习

逆函数 给定关系 R ⊆ X Y R\subseteq X\times Y R⊆XY&#xff0c;颠倒 R R R的所有有序偶可以得到 R R R的逆关系 R ~ ⊆ Y X \tilde{R}\subseteq Y\times X R~⊆YX 但是对于函数 f : X → Y f:X\to Y f:X→Y而言&#xff0c;其逆关系 f ~ \tilde{f} f~​可能不是 Y Y Y到…...

代码审计——SSRF详解

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 漏洞描述02 审计要点03 漏洞特征04 漏洞案例05 修复方案 01 漏洞描述 服务端请求伪造攻击&#xff08;SSRF&#xff09;也成为跨站点端口攻击&#xff0c;是由于一些应用在向第三方主机请求资源时提…...

搭建Scala开发环境

一、Windows上安装Scala 1、到Scala官网下载Scala Scala2.13.10下载网址&#xff1a;https://www.scala-lang.org/download/2.13.10.html 单击【scala-2.13.10.msi】超链接&#xff0c;将scala安装程序下载到本地 2、安装Scala 双击安装程序图标&#xff0c;进入安装向导&…...

BLIP和BLIP2

文章主要是对BLIP2 &#xff08;使用冻结图像编码器和大型语言模型的Bootstrapping语言图像预训练&#xff09;论文的阅读笔记&#xff0c;也对BLIP&#xff08;用于统一视觉语言理解和生成的Bootstrapping语言图像预训练&#xff09;算法进行了简单的介绍。 文章&#xff1a;…...

微信小程序开发实战 ⑨(TabBar)

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; 微信小程序 &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f4…...

微前端探秘:初始微前端、现有方案和未来趋势

初识微前端 微前端是什么 概念&#xff1a; 微前端是指存在于浏览器中的微服务。 微前端是一种类似于微服务的架构&#xff0c;它将微服务的理念应用于浏览器端&#xff0c;即将单页面前端应用由单一的单体应用转变为把多个小型前端应用聚合为一体的应用。这就意味着前端应用…...

运维(SRE)成长之路-第2天 文本编辑工具之神VIM

vi和vim简介 在Linux中我们经常编辑修改文本文件&#xff0c;即由ASCII, Unicode 或其它编码的纯文字的文件。之前介绍过nano&#xff0c;实际工作中我们会使用更为专业&#xff0c;功能强大的工具 文本编辑种类&#xff1a; 全屏编辑器&#xff1a;nano&#xff08;字符工具…...

45从零开始学Java之详解static修饰符、静态变量和静态方法

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 在前一篇文章中&#xff0c;壹哥给大家讲解了abstract关键字&#xff0c;从而我们掌握了抽象类与抽象…...

电商超卖,从业务到设计

编辑导语&#xff1a;超卖这一概念的定义可以从不同层面进行阐述&#xff0c;比如平台层面、渠道层面、仓库层面等。而假设因超卖导致订单难以履行&#xff0c;则容易让用户体验“打折”。为什么有时电商超卖的现象会发生&#xff1f;可以从哪些角度来降低超卖导致的风险&#…...

【MySQL】表的约束

表的约束 表的约束1. 空属性2. 默认值3. 列描述4. zerofill&#xff08;自动补零&#xff09;5. 主键—primary key5.1 复合主键 6. 自增长—auto_increment7.唯一键 --- unique8. 外键 --- foreign key…reference9. 综合案例 表的约束 真正约束字段的是数据类型&#xff0c;…...

【计算机网络】第一章 概述(下)

文章目录 第一章 概述1.5 计算机网络的性能指标1.5.1 速率1.5.2 带宽1.5.3 吞吐量1.5.4 时延 1.6 计算机网络体系结构1.6.1 常见的体系结构1.6.2 分层的必要性1.6.4 体系结构中的专用术语 1.8 习题 第一章 概述 1.5 计算机网络的性能指标 常用的 计算机网络 的性能指标有以下 …...

化工园区人员全过程轨迹化安全解决方案

1、项目背景 化工园区化工厂是生产安全重点单位&#xff0c;对人员定位管理需求强烈。对人员定位主要需求是&#xff1a;一般区域人数统计、人员轨迹、重点区域人员实时精准定位。 华安联大安全化工园区人员全过程轨迹化安全解决方案通过人员实时定位管理、移动轨迹追溯、险情…...

Java泛型中的T、E、K、V、?通配符,你确定都了解吗?

目录 前言 泛型带来的好处 泛型中通配符 小结 前言 Java 泛型&#xff08;generics&#xff09;是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制&#xff0c;该机制允许开发者在编译时检测到非法的类型。 泛型的本质是参数化类型&#xff0c;也就是说所操…...

Jenkins部署及使用

Jenkins 1.定义 1.Jenkins是一款开源CI/CD软件&#xff0c;用于自动化各种任务&#xff0c;包括构建、测试和部署软件 1.CI/CD 1.CI&#xff1a;持续集成(Continuous Integration) 1.协同开发是目前主流的开发方式&#xff0c;一般由多位开发人员同时处理同一个应用的不同模块…...

UML类图(二)

相信希望&#xff0c;相信自己 上一章简单介绍了 设计模式的原则(一), 如果没有看过,请观看上一章 本文参考文章: 常见UML符号详解 UML (Unified modeling language) 统一建模语言&#xff0c;是一种用于软件系统分析和设计的语言工具&#xff0c; 它用于帮助软件开发人员进行…...

【IoU全总结】GIoU, DIoU, CIoU, EIoUFocal, αIoU, SIoU,WIoU【基础收藏】

&#x1f951; Welcome to Aedream同学 s blog! &#x1f951; 并不存在效果一定优秀的IoU&#xff0c;需要结合自己的网络、数据集试验。 不想深究原理可直接跳转总结。文内公式均为手打&#xff0c;非图片&#xff0c;方便查看 文章目录 L1 Loss&#xff0c;L2Loss&#xff0…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

代理服务器-LVS的3种模式与调度算法

作者介绍&#xff1a;简历上没有一个精通的运维工程师。请点击上方的蓝色《运维小路》关注我&#xff0c;下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 我们上一章介绍了Web服务器&#xff0c;其中以Nginx为主&#xff0c;本章我们来讲解几个代理软件&#xff1a…...

scan_mode设计原则

scan_mode设计原则 在进行mtp controller设计时&#xff0c;基本功能设计完成后&#xff0c;需要设计scan_mode设计。 1、在进行scan_mode设计时&#xff0c;需要保证mtp处于standby模式&#xff0c;不会有擦写、编程动作。 2、只需要固定mtp datasheet说明的接口即可&#xf…...

qt 双缓冲案例对比

双缓冲 1.双缓冲原理 单缓冲&#xff1a;在paintEvent中直接绘制到屏幕&#xff0c;绘制过程被用户看到 双缓冲&#xff1a;先在redrawBuffer绘制到缓冲区&#xff0c;然后一次性显示完整结果 代码结构 单缓冲&#xff1a;所有绘制逻辑在paintEvent中 双缓冲&#xff1a;绘制…...

C++ 变量和基本类型

1、变量的声明和定义 1.1、变量声明规定了变量的类型和名字。定义初次之外&#xff0c;还申请存储空间&#xff0c;也可能会为变量赋一个初始值。 如果想声明一个变量而非定义它&#xff0c;就在变量名前添加关键字extern&#xff0c;而且不要显式地初始化变量&#xff1a; e…...