当前位置: 首页 > news >正文

时序数据库的流计算支持

一、时序数据及其特点 

时序数据(Time Series Data)是基于相对稳定频率持续产生的一系列指标监测数据,比如一年内的道琼斯指数、一天内不同时间点的测量气温等。时序数据有以下几个特点:

  • 历史数据的不变性
  • 数据的有效性
  • 数据的时效性
  • 结构化的数据
  • 数据的大量性

二、时序数据库基本架构

针对时序数据的特点,时序数据库一般具有以下特性:

  • 高速的数据入库
  • 数据的生命周期管理
  • 数据的流处理
  • 高效的数据查询
  • 定制的数据压缩

三、流计算介绍 

流计算主要是指针对实时获取来自不同数据源的海量数据,经过实时分析处理,从而获得有价值的信息。常见的业务场景包括实时事件的快速反应,市场变化的实时告警,实时数据的交互分析等。流计算一般包括如下几方面的功能:

1)过滤和转换 (filter & map)

2)聚合以及窗口函数 (reduce,aggregation/window)

3)多数据流合并以及模式匹配 (joining & pattern detection)

4)从流到块处理

四、时序数据库对流计算的支持   

  • 案例一:使用定制化的流计算 API,如下面例子所示:

from(bucket: "mydb")  
|> range(start: -1h)  
|> filter(fn: (r) => r["_measurement"] == "mymeasurement")  
|> map(fn: (r) => ({ r with value: r.value * 2 }))  
|> filter(fn: (r) => r.value > 100)  
|> aggregateWindow(every: 1m, fn: sum, createEmpty: false)  
|> group(columns: ["location"])  
|> join(tables: {stream1: {bucket: "mydb", measurement: "stream1", start: -1h}, stream2: {bucket: "mydb", measurement: "stream2", start: -1h}}, on: ["location"])  
|> alert(name: "value_above_threshold", message: "Value is above threshold", crit: (r) => r.value > 100)  
|> to(bucket: "mydb", measurement: "output", tagColumns: ["location"])

  • 案例二:使用类 SQL 指令,创建流计算以及定义流计算规则,如下:

CREATE STREAM current_stream        
TRIGGER AT_ONCE        
INTO current_stream_output_stb AS        
SELECT             _wstart as start,              _wend as end,              max(current) as max_current        FROM meters        WHERE voltage <= 220        INTEVAL (5S) SLIDING (1s);

相关文章:

时序数据库的流计算支持

一、时序数据及其特点 时序数据&#xff08;Time Series Data&#xff09;是基于相对稳定频率持续产生的一系列指标监测数据&#xff0c;比如一年内的道琼斯指数、一天内不同时间点的测量气温等。时序数据有以下几个特点&#xff1a; 历史数据的不变性数据的有效性数据的时效…...

springboot启动流程 (3) 自动装配

在SpringBoot中&#xff0c;EnableAutoConfiguration注解用于开启自动装配功能。 本文将详细分析该注解的工作流程。 EnableAutoConfiguration注解 启用SpringBoot自动装配功能&#xff0c;尝试猜测和配置可能需要的组件Bean。 自动装配类通常是根据类路径和定义的Bean来应…...

ansible-roles模块

roles用于层次性&#xff0c;结构化地组织playbook&#xff0c;roles能够根据层次型结构自动装载变量文件&#xff0c;tasks以及handlers等。要使用只要载playbook中使用include指令引入即可。 &#xff08;roles就是通过分别将变量&#xff0c;文件&#xff0c;任务&#xff…...

聊聊我做 NeRF-3D重建性能优化经历

我们新推出大淘宝技术年度特刊《长期主义&#xff0c;往往从一些小事开始——工程师成长总结专题》&#xff0c;专题收录多位工程师真诚的心路历程与经验思考&#xff0c;覆盖终端、服务端、数据算法、技术质量等7大技术领域&#xff0c;欢迎一起沟通交流。 本文为此系列第四篇…...

未磁科技全球首台64通道无液氦心磁图仪及首个培训基地落户北京安贞医院

【全球首台64通道无液氦心磁图仪在北京安贞医院举行开机仪式】 近日&#xff0c;在北京安贞医院举行了未磁科技全球首台64通道无液氦心磁图仪开机仪式&#xff0c;中国医学装备协会赵自林理事长、北京安贞医院纪智礼书记、张宏家院长、宋现涛教授&#xff0c;以及未磁科技蔡宾…...

SpringBoot 如何使用 ApplicationEventPublisher 发布事件

SpringBoot 如何使用 ApplicationEventPublisher 发布事件 在 SpringBoot 应用程序中&#xff0c;我们可以使用 ApplicationEventPublisher 接口来发布事件。事件可以是任何对象&#xff0c;当该对象被发布时&#xff0c;所有监听该事件的监听器都会收到通知。 下面是一个简单…...

【深度学习】2-3 神经网络-输出层设计

前馈神经网络(Feedforward Neural Network)&#xff0c;之前介绍的单层感知机、多层感知机等都属于前馈神经网络&#xff0c;它之所以称为前馈(Feedforward)&#xff0c;或许与其信息往前流有关&#xff1a;数据从输入开始&#xff0c;流过中间计算过程&#xff0c;最后达到输出…...

Python网络爬虫开发:使用PyQt5和WebKit构建可定制的爬虫

部分数据来源:ChatGPT 引言 在网络爬虫开发中,使用Web浏览器模拟用户行为是非常重要的。而在这个过程中,基于 WebKit 的框架可以提供比其他技术更紧密的浏览器集成,以及更高效、更多样化的页面交互方式。 在本文中,我们将通过一个使用基于 WebKit 的爬虫示例,并与类似…...

Laya3.0游戏框架搭建流程(随时更新)

近两年AI绘图技术有了长足发展&#xff0c;准备把以前玩过的游戏类型重制下&#xff0c;也算是圆了一个情怀梦。 鉴于unity商用水印和启动时间的原因&#xff0c;我决定使用Laya来开发。目前laya已经更新到了3.0以上版本&#xff0c;就用目前比较新的版本。 之后关于开发中遇到…...

.net 软件开发模式——三层架构

三层架构是一种常用的软件开发架构模式&#xff0c;它将应用程序分为三个层次&#xff1a;表示层、业务逻辑层和数据访问层。每一层都有明确的职责和功能&#xff0c;分别负责用户交互、业务处理和数据存储等任务。这种架构模式的优点包括易于维护和扩展、更好的组织结构和代码…...

SpringBoot如何优雅的实现重试功能

文章目录 使用背景spring-retry介绍快速使用加入依赖开启Retry使用参数 使用背景 在有些特定场景&#xff0c;如和第三方对接。 我们调用接口时需要支持重试功能&#xff0c;第一次调用没成功&#xff0c;我们需要等待x秒后再次调用。 通常会设置重试次数&#xff0c;避免业务…...

【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

OpenText Exceed TurboX(ETX)—— 适用于 UNIX、Linux 和 Windows 的远程桌面解决方案

由于新技术的采用&#xff0c;以及商业全球化和全球协作的现实&#xff0c;几乎所有企业&#xff08;无论其规模和所处行业&#xff09;的员工的工作方式、时间和地点都发生了重大变化。业务领导者正在推动其 IT 部门提出解决方案&#xff0c;以帮助其远程员工提高工作效率&…...

【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降

【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降 逻辑回归分类Logistic Regression ClassificationLogistic Regression: Log OddsLogistic Regression: Decision BoundaryLikelihood under the Logistic ModelTraining the Logistic ModelGradient Desc…...

k8s pod “cpu和内存“ 资源限制

转载用于收藏学习&#xff1a;原文 文章目录 Pod资源限制requests&#xff1a;limits&#xff1a;docker run命令和 CPU 限制相关的所有选项如下&#xff1a; Pod资源限制 为了保证充分利用集群资源&#xff0c;且确保重要容器在运行周期内能够分配到足够的资源稳定运行&#x…...

datagrip 连接 phoenix

jar替换完后尽量重启datagrip. 然后重新连接即可. 不重启貌似报错... 效果:...

黑客入侵的常法

1.无论什么站&#xff0c;无论什么语言&#xff0c;我要渗透&#xff0c;第一件事就是扫目录&#xff0c;最好一下扫出个上传点&#xff0c;直接上传 shell &#xff0c;诸位不要笑&#xff0c;有时候你花很久搞一个站&#xff0c;最后发现有个现成的上传点&#xff0c;而且很容…...

VB报警管理系统设计(源代码+系统)

可定时显示报警系统是一个能够定时并及时报警,提醒人们安全有效地按计划完成任务的系统。本论文从软件工程的角度,对可定时显示报警系统做了全面的需求分析,简要说明了该系统的构思、特点及开发环境;阐述了系统的主要功能,论述了它的设计与实现,并且叙述了系统的测试与评…...

Redis入门 - Redis Stream

原文首更地址&#xff0c;阅读效果更佳&#xff01; Redis入门 - Redis Stream | CoderMast编程桅杆Redis入门 - Redis Stream Redis Stream 是 Redis 5.0 版本新增加的数据结构。 Redis Stream 主要用于消息队列&#xff08;MQ&#xff0c;Message Queue&#xff09;&#xf…...

微服务中常见问题

Spring Cloud 组件 Spring Cloud五大组件有哪些&#xff1f; Eureka&#xff1a;注册中心 Ribbon&#xff1a;负载均衡 Feign&#xff1a;远程调用 Hystrix&#xff1a;服务熔断 Zuul/Gateway&#xff1a;服务网关 随着SpringCloud Alibaba在国内兴起&#xff0c;我们项目中…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...