【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 完备集合经验模态分解原理
1.2 变分 模 态 分 解
1.3 GRU
📚2 运行结果
🎉3 参考文献
🌈4 Python代码实现
💥1 概述
1.1 完备集合经验模态分解原理
早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中
容易出现模态混叠现象。EEMD 分解方法的思想是:在原始信号中加入白噪声[16],使极值点分布更均衡;最终分量在EMD 的基础上进行集成平均而得。但是,这种方法具有计算量大且重构时残留噪音大的缺陷。CEEMDAN 是 EEMD 的改进算法。该算法通过添加有限次数的自适应白噪声,解决了集合平均次数限制下的重构误差较大的问题。
1.2 变分 模 态 分 解
变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量
混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过
程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。
1.3 GRU
循环神经网络(Recurrent neural network,RNN)是经典的神经网络之一。由于 RNN 隐藏层
在不同样本序列的同一个神经元之间存在记忆传递,因此 RNN 在处理时间序列的线性回归问题具有优势:即,可以将前一刻神经元受到的影响输送到下一次学习中。但是,传统的 RNN 在进行反向传播时,如果输入数据的序列比较长,就会出现梯度消失、梯度爆炸等问题。
长短期记忆网络(Long short term memory,LSTM)和 GRU 的优势,在于其通过“门”结构极大地避免梯度消失问题,可以有效地分析长期依赖关系。
LSTM 包含 3 个门结构:遗忘门,输入门、输出门[21]。GRU 在 LSTM 的基础上减少了单元中门的个数,化简了单元复杂度,因此其运行效果要好于 LSTM。GRU 是由更新门和重置门构成,其内部结构如图 1 所示。

📚2 运行结果




部分代码:
# 7.Predict Co-IMF0 by matrix-input GRU
time0 = time.time()
df_vmd_co_imf0['sum'] = df_integrate_result['co-imf0']
co_imf0_predict_raw, co_imf0_gru_evaluation, co_imf0_train_loss = GRU_predict(df_vmd_co_imf0)
print('======Co-IMF0 Predicting Finished======\n', co_imf0_gru_evaluation)
time1 = time.time()
print('Running time: %.3fs'%(time1-time0))
co_imf0_predict_raw.plot(title='Co-IMF0 Predicting Result')
co_imf0_train_loss.plot(title='Co-IMF0 Training Loss')# 8.Predict Co-IMF1 and Co-IMF2 by vector-input GRU
co_imf1_predict_raw, co_imf1_gru_evaluation, co_imf1_train_loss = GRU_predict(df_integrate_result['co-imf1'])
print('======Co-IMF1 Predicting Finished======\n', co_imf1_gru_evaluation)
time2 = time.time()
print('Running time: %.3fs'%(time2-time1))
co_imf1_predict_raw.plot(title='Co-IMF1 Predicting Result')
co_imf1_train_loss.plot(title='Co-IMF1 Training Loss')co_imf2_predict_raw, co_imf2_gru_evaluation, co_imf2_train_loss = GRU_predict(df_integrate_result['co-imf2'])
print('======Co-IMF2 Predicting Finished======\n', co_imf2_gru_evaluation)
time3 = time.time()
print('Running time: %.3fs'%(time3-time2))
co_imf2_predict_raw.plot(title='Co-IMF2 Predicting Result')
co_imf2_train_loss.plot(title='Co-IMF2 Training Loss')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]金子皓,向玲,李林春,胡爱军.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(01):9-16.
[2]蒋富康,陆金桂,刘明昊,丰宇.基于CEEMDAN和CNN-LSTM的滚动轴承故障诊断[J].电子测量技术,2023,46(05):72-77.DOI:10.19651/j.cnki.emt.2210775.
🌈4 Python代码实现
相关文章:
【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
OpenText Exceed TurboX(ETX)—— 适用于 UNIX、Linux 和 Windows 的远程桌面解决方案
由于新技术的采用,以及商业全球化和全球协作的现实,几乎所有企业(无论其规模和所处行业)的员工的工作方式、时间和地点都发生了重大变化。业务领导者正在推动其 IT 部门提出解决方案,以帮助其远程员工提高工作效率&…...
【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降
【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降 逻辑回归分类Logistic Regression ClassificationLogistic Regression: Log OddsLogistic Regression: Decision BoundaryLikelihood under the Logistic ModelTraining the Logistic ModelGradient Desc…...
k8s pod “cpu和内存“ 资源限制
转载用于收藏学习:原文 文章目录 Pod资源限制requests:limits:docker run命令和 CPU 限制相关的所有选项如下: Pod资源限制 为了保证充分利用集群资源,且确保重要容器在运行周期内能够分配到足够的资源稳定运行&#x…...
datagrip 连接 phoenix
jar替换完后尽量重启datagrip. 然后重新连接即可. 不重启貌似报错... 效果:...
黑客入侵的常法
1.无论什么站,无论什么语言,我要渗透,第一件事就是扫目录,最好一下扫出个上传点,直接上传 shell ,诸位不要笑,有时候你花很久搞一个站,最后发现有个现成的上传点,而且很容…...
VB报警管理系统设计(源代码+系统)
可定时显示报警系统是一个能够定时并及时报警,提醒人们安全有效地按计划完成任务的系统。本论文从软件工程的角度,对可定时显示报警系统做了全面的需求分析,简要说明了该系统的构思、特点及开发环境;阐述了系统的主要功能,论述了它的设计与实现,并且叙述了系统的测试与评…...
Redis入门 - Redis Stream
原文首更地址,阅读效果更佳! Redis入门 - Redis Stream | CoderMast编程桅杆Redis入门 - Redis Stream Redis Stream 是 Redis 5.0 版本新增加的数据结构。 Redis Stream 主要用于消息队列(MQ,Message Queue)…...
微服务中常见问题
Spring Cloud 组件 Spring Cloud五大组件有哪些? Eureka:注册中心 Ribbon:负载均衡 Feign:远程调用 Hystrix:服务熔断 Zuul/Gateway:服务网关 随着SpringCloud Alibaba在国内兴起,我们项目中…...
更新删除清理购物车
目录 1 更新购物车 2 取会员门店购物车项 3 取会员门店购物车项(无缓存) 4 删除门店购物车某项 5 删除门店购物车多项 6 清理门店购物车 7 清理门店购物车 8 添加商品至购物车 9 添加商品至购物车...
基于Intel NUC平台的字符设备陀螺仪GX5-25驱动程序
陀螺仪GX5-25连接到Intel NUC上可能需要进行一些设备树的修改和编写驱动程序的工作。这是因为陀螺仪GX5-25可能需要特定的设备树配置和驱动程序来与Intel NUC的硬件和操作系统进行通信。 如果陀螺仪GX5-25没有官方的Linux驱动程序或文档,您可能需要自己编写驱动程序…...
建立小型医学数据库(总结)
建立小型医学数据库 小型医学数据库可以用于存储和管理医学数据,如患者病历、药品信息、试验结果等。这对于医疗机构和科研机构来说非常必要,可以提高数据管理和共享的效率,进而促进医学研究和诊疗水平的提升。 建立小型医学数据库有以下基本…...
Git学习笔记
文章目录 一. 引入1. SCM软件2. 概念 二. GitHubDesktop三. Git1. 版本号 (底层原理)1.1 视频笔记1.2 实操记录 2. Git命令2.0 汇总2.1 仓库操作2.2 文件操作2.3 分支操作2.4 标签操作2.5 远程仓库 四. idea操作 一. 引入 1. SCM软件 2. 概念 集中式版本控制 文件冲突 可以上…...
vue面试题1. 请说下封装 vue 组件的过程?2. Vue组件如何进行传值的?3. Vue 组件 data 为什么必须是函数?4. 讲一下组件的命名规范
1. 请说下封装 vue 组件的过程? 首先,组件可以提升整个项目的开发效率。能够把页面抽象成多个相对独立的模块,解决了我们传统项目开发:效率低、难维护、复用性等问题。 分析需求:确定业务需求,把页面中可以…...
Docker使用记录
文章目录 Docker基本使用Docker配置查看状态卸载安装使用 apt 存储库安装在 Ubuntu 上安装 Docker 桌面(非必要) Docker实例使用现有的镜像查找镜像拖取镜像列出镜像列表更新镜像导出镜像删除镜像导入镜像清理镜像查看容器导出容器导入容器-以镜像的方式创建容器重启容器进入容…...
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
1. 形态学2. 常用接口2.1 cvtColor()2.2 图像二值化threshod()自适应阈值二值化adaptiveThreshod() 2.3 腐蚀与膨胀erode()getStructuringElement()dilate() 2.4开、闭、梯度、顶帽、黑帽运算morphologyEx() 1. 形态学 OpenCV形态学是一种基于OpenCV库的数字图像处理技术&…...
chatgpt赋能python:Python支持跨平台软件开发
Python支持跨平台软件开发 作为一种高级编程语言,Python 以其丰富的库和跨平台支持而备受开发人员欢迎。Python 通过将应用程序的可移植性最大化,使得开发人员可以轻松地在不同的操作系统平台上构建和部署软件。 跨平台支持 Python 支持各种不同的操作…...
哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集
哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集 文章目录 哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集CIDR与路由聚集CIDR路由聚集 CIDR与路由聚集 CIDR CIDR:无类域间路由(CIDR:Classless InterDo…...
C++ 教程(19)——日期 时间
C 日期 & 时间 C 标准库没有提供所谓的日期类型。C 继承了 C 语言用于日期和时间操作的结构和函数。为了使用日期和时间相关的函数和结构,需要在 C 程序中引用 <ctime> 头文件。 有四个与时间相关的类型:clock_t、time_t、size_t 和 tm。类型…...
React 应用 Effect Hook 函数式中操作生命周期
React Hook入门小案例 在函数式组件中使用state响应式数据给大家演示了最简单的 Hook操作 那么 我们继续 首先 Hook官方介绍 他没有破坏性是完全可选的 百分比兼容 也就说 我们一起的 类 class的方式也完全可以用 只要 react 16,8以上就可以使用 Hook本身不会影响你的react的理…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

