MATLAB应用
目录
网站
智能图像色彩缩减和量化
网站
https://yarpiz.com/
智能图像色彩缩减和量化
使用智能聚类方法:(a)k均值算法,(b)模糊c均值聚类(FCM)和(c)自组织神经网络,使用 RGB 和 HSV 颜色编码来执行聚类任务。
file = uigetfile
打开一个模态对话框,其中列出了当前文件夹中的文件。用户可以在这里选择或输入文件的名称。如果文件存在并且有效,当用户点击打开时,uigetfile
将返回文件名。如果用户点击取消或窗口关闭按钮 (X),uigetfile
将返回0
。当用户点击打开时,
[file,path] = uigetfile
将返回文件的名称和路径。如果用户点击取消或窗口关闭按钮 (X),uigetfile
将为两个输出参数都返回0
。
[file,path,indx] = uigetfile
将返回在对话框中选择的筛选器的索引。
___ = uigetfile(filter)
指定文件扩展名,根据该扩展名筛选对话框中显示的文件。可以将此语法与上述语法中的任何输出参数结合使用。
pause(n) 暂停执行 n 秒,然后继续执行。必须启用暂停,此调用才能生效。
pause(state) 启用、禁用或显示当前暂停设置。
oldState = pause(state) 返回当前暂停设置并如 state 所示设置暂停状态。例如,如果已启用暂停功能,oldState = pause('off') 会在 oldState 中返回 'on' 并禁用暂停。
提取rgb
img=imread(FullFileName); img=im2double(img);R=img(:,:,1); G=img(:,:,2); B=img(:,:,3);X=[R(:) G(:) B(:)]; Z=X;
strcmpi - 比较字符串(不区分大小写)
此 MATLAB 函数 将比较 s1 和 s2,并忽略字母大小写差异。如果二者相同,函数将返回 1(true),否则返回 0 (false)。如果文本的大小和内容相同,则它们将视为相等,不考虑大小
写。返回结果 tf 的数据类型为 logical。
kmeans
idx = kmeans(X,k)
执行 k 均值聚类,以将 n×p 数据矩阵X
的观测值划分为k
个聚类,并返回包含每个观测值的簇索引的 n×1 向量 (idx
)。X
的行对应于点,列对应于变量。默认情况下,
kmeans
使用欧几里德距离平方度量,并用 k-means++ 算法进行簇中心初始化。
idx = kmeans(X,k,Name,Value)
进一步按一个或多个Name,Value
对组参数所指定的附加选项返回簇索引。例如,指定余弦距离、使用新初始值重复聚类的次数或使用并行计算的次数。prod
B = prod(A)
返回A
的数组元素的乘积。
如果
A
是向量,则prod(A)
返回元素的乘积。如果
A
为非空矩阵,则prod(A)
将A
的各列视为向量,并返回一个包含每列乘积的行向量。如果
A
为 0×0 空矩阵,prod(A)
返回1
。如果
A
为多维数组,则prod(A)
沿第一个非单一维度运算并返回乘积数组。此维度的大小将减少至1
,而所有其他维度的大小保持不变。如果输入
A
为single
类型,则prod
会计算并将B
以single
类型返回。如果为任何其他数值和逻辑数据类型,prod
会计算并将B
以double
类型返回。
B = prod(A,
计算'all'
)A
的所有元素的乘积。
clc;
clear;
close all;%% Select ImageFilter={'*.jpg;*.jpeg;*.png'};[FileName, FilePath]=uigetfile(Filter);
pause(0.01);if FileName==0return;
endFullFileName=[FilePath FileName];%% Load Image DataChoices = {'RGB', 'HSV'};ANSWER = questdlg('Select the color coding:', ...'Color Coding', ...Choices{1}, Choices{2}, ...Choices{1});
pause(0.01);img=imread(FullFileName);
img=im2double(img);R=img(:,:,1);
G=img(:,:,2);
B=img(:,:,3);X=[R(:) G(:) B(:)];
Z=X;UseHSV = strcmpi(ANSWER, 'HSV');if UseHSVY=rgb2hsv(X);W=[3 1 2];for l=1:numel(W)Y(:,l)=Y(:,l)*W(l);endZ=Y;
end%% Number of Desired ColorsANSWER = inputdlg('Number of desired colors:','Color Reduction',1,{'25'});
pause(0.01);nColor = str2double(ANSWER{1});%% Select AlgorithmChoices = {'k-Means Clusterin', 'Fuzzy Clustering (FCM)', 'SOM Network'};ANSWER = questdlg('Select the clustering algorithm:', ...'Color Coding', ...Choices{1}, Choices{2}, Choices{3}, ...Choices{1});
pause(0.01);UseKMeans = strcmpi(ANSWER, Choices{1});
UseFCM = strcmpi(ANSWER, Choices{2});
UseSOM = strcmpi(ANSWER, Choices{3});%% Perform Clusteringif UseKMeansMethod = 'k-Means Clustering';Options.MaxIter=1000;[IDX, C]=kmeans(Z,nColor,'options',Options);
endif UseFCMMethod = 'Fuzzy Clustering (FCM)';[C, U]=fcm(Z,nColor);[MaxU, IDX]=max(U);
endif UseSOMMethod = 'SOM Neural Network';NetSize=[floor(sqrt(nColor)) ceil(sqrt(nColor))];nColor = prod(NetSize);[IDX, C]=SOM(Z,NetSize);
end%% Create Reduced ImageZ2=C(IDX,:);if UseHSVY2 = Z2;for l=1:numel(W)Y2(:,l)=Y2(:,l)/W(l);endX2=hsv2rgb(Y2);
elseX2=Z2;
endR2=reshape(X2(:,1),size(R));
G2=reshape(X2(:,2),size(G));
B2=reshape(X2(:,3),size(B));img2=zeros(size(img));
img2(:,:,1)=R2;
img2(:,:,2)=G2;
img2(:,:,3)=B2;%% Show Resultsfigure;subplot(1,2,1);
imshow(img);
title('Original Image');subplot(1,2,2);
imshow(img2);
title(['Color Reduced Image (k = ' num2str(nColor) ') using ' Method]);
相关文章:

MATLAB应用
目录 网站 智能图像色彩缩减和量化 网站 https://yarpiz.com/ 智能图像色彩缩减和量化 使用智能聚类方法:(a)k均值算法,(b)模糊c均值聚类(FCM)和(c)自组织神…...

LeetCode --- 1784. Check if Binary String Has at Most One Segment of Ones 解题报告
Given a binary string s without leading zeros, return true if s contains at most one contiguous segment of ones. Otherwise, return false. Example 1: Input: s = "1001" Output: false Explanation: The ones do not form a contiguous s…...
js:javascript中的事件体系:常见事件、事件监听、事件移除、事件冒泡、事件捕获、事件委托、阻止事件
参考资料 事件介绍Element事件 目录 常见的事件鼠标事件键盘事件Focus events 添加事件监听方式一:addEventListener()(推荐)方式二:事件处理器属性方式三:内联事件处理器(不推荐) 移除监听器方…...

【数据结构】特殊矩阵的压缩存储
🎇【数据结构】特殊矩阵的压缩存储🎇 🌈 自在飞花轻似梦,无边丝雨细如愁 🌈 🌟 正式开始学习数据结构啦~此专栏作为学习过程中的记录🌟 文章目录 🎇【数据结构】特殊矩阵的压缩存储Ἰ…...

在layui中使用vue,使用vue进行页面数据部分数据更新
layui是一款非常优秀的框架,使用也非常的广泛,许多后台管理系统都使用layui,简单便捷,但是在涉及页面部分数据变化,就比较难以处理,比如一个页面一个提交页,提交之后部分数据实时进行更新&#…...

Vue中如何进行数据导入与Excel导入
Vue中如何进行数据导入与Excel导入 Vue是一款非常流行的JavaScript框架,它提供了一套用于构建用户界面的工具和库。在Vue中,我们可以使用多种方式来导入数据,包括从服务器获取数据、从本地存储获取数据、从文件中读取数据等等。其中…...

git 的基本操作
1. git建立本地仓库 在想要建立的目录下输入命令 git init 我们可以看一下 .git目录下有什么 2. 配置git本地仓库 配置用户的 name 和 email 命令:git config [...] 配置完后,我们像查看一下 刚才的配置 2.1 查看配置命令 git config -l 2.2 删除…...

搭建Vue项目以及项目的常见知识
前言:使用脚手架搭建vue项目,使用脚手架可以开发者能够开箱即用快速地进行应用开发而开发。 搭建 #创建一个基于 webpack 模板的新项目 vue init webpack my-project #选择所需要的选项如图: cd my-project npm run dev访问localhost:808…...

TypeScript ~ TS Webpack构建工具 ⑦
作者 : SYFStrive 博客首页 : HomePage 📜: TypeScript ~ TS 📌:个人社区(欢迎大佬们加入) 👉:社区链接🔗 📌:觉得文章不错可以点点关注 &…...
Rust 自建HTTP Server支持图片响应
本博客是在杨旭老师的 rust web 全栈教程项目基础上进行修改,支持了图片资源返回,杨旭老师的rust web链接如下: https://www.bilibili.com/video/BV1RP4y1G7KFp1&vd_source8595fbbf160cc11a0cc07cadacf22951 本人默认读者已经学习了相关…...
[游戏开发][Unity]UnityWebRequest使用大全
首先记录个小问题 使用new UnityWebRequest的方式,最终的downloadHandler是个null 使用UnityWebRequest.Get的方式,最终的downloadHandler会是DownloadHandlerBuffer 从网站或本地下载内容,包括文本或二进制数据 IEnumerator downloadfile(st…...

如何使用Fiddler对手机进行弱网测试?(干货教程)
1.首先,fiddler连接手机 1)Tools->Options->Connections->设置端口8888,勾选Allow remote computers to connect 2)配置手机 注:手机和电脑需要在同一局域网下 手机进入网络详情,将代理改为手动 设置主机名、端口 主机…...

专业科普:什么是单片机?
一、什么是单片机 单片机诞生于20世纪70年代末,它是指一个集成在一块芯片上的完整计算机系统。单片机具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。同时集成诸如通讯接口、定时器ÿ…...

深度学习-第T11周——优化器对比实验
深度学习-第T11周——优化器对比实验 深度学习-第T11周——优化器对比实验一、前言二、我的环境三、前期工作1、导入数据集2、查看图片数目3、查看数据 四、数据预处理1、 加载数据1、设置图片格式2、划分训练集3、划分验证集4、查看标签 2、数据可视化3、检查数据4、配置数据集…...

基于Dlib的疲劳检测系统
需要源码的朋友可以私信我 基于Dlib的疲劳检测系统 1、设计背景及要求2、系统分析3、系统设计3.1功能结构图3.2基于EAR、MAR和HPE算法的疲劳检测3.2.1基于EAR算法的眨眼检测3.2.2基于MAR算法的哈欠检测3.3.3基于HPE算法的点头检测 4、系统实现与调试4.1初步实现4.2具体实现过程…...

three.js通过CubeTexture加载环境贴图,和RGBELoader加载器加载hdr环境贴图
一、使用CubeTexture进行环境贴图 1.CubeTexture使用介绍 Three.js中可以通过使用CubeTexture进行环境贴图,CubeTexture需要将6张图片(正面、反面、上下左右)包装成一个立方体纹理。下面是一个简单的例子: 首先需要加载六张贴图…...

pycharm中Terminal输入sqlite3,出现无法将sqlite项识别为cmdlet**的解决方法
前提:本机上已安装sqlite3,安装详见:pycharm社区版中安装配置sqlite3_Sunshine_0426的博客-CSDN博客 问题: cmd命令行中或pycharm中Terminal行输入sqlite3 db.sqlite3命令后,出现“无法将“sqlite3”项识别为 cmdlet…...

VSCode 安装配置教程详解包含c++环境配置方法
vscode安装教程及c环境配置详解 vscode下载安装下载C扩展插件VScode C环境配置配置环境变量检查 MinGW 安装配置编译器:配置构建任务检查是否安装了编译器配置完毕 vscode下载安装 地址:官网下载地址 直接打开下载好的.exe文件进行安装即可࿰…...
Baumer工业相机堡盟工业相机如何通过BGAPISDK将图像放大缩小显示(C#)
Baumer工业相机堡盟工业相机如何通过BGAPISDK将图像放大缩小显示(C#) Baumer工业相机Baumer工业相机BGAPISDK和图像放大缩小的技术背景Baumer工业相机通过BGAPISDK将相机图像图像放大缩小功能1.引用合适的类文件2.通过BGAPISDK将相机图像图像放大缩小功能…...

8.1 PowerBI系列之DAX函数专题-进阶-解决列排序对计算的影响
需求 下列矩阵中,在月份列不按照原始数据的month_no排列时,能正确计算销售额占比,但是当月份按照month_no排序时就会出错,需要解决这个问题。 实现 month % divide([amount],calculate([amount],all(date[month desc]))) //排…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...