当前位置: 首页 > news >正文

【AI机器学习入门与实战】机器学习算法都有哪些分类?

👍【AI机器学习入门与实战】目录
🍭基础篇
🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍
🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解
🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类?
🔥 第四篇:【AI机器学习入门与实战】数据从何而来?
🔥 第五篇:【AI机器学习入门与实战】数据预处理的招式:闪电五连鞭!
🔥 第六篇:【AI机器学习入门与实战】选择合适的算法:选择比努力重要!
🔥 第七篇:【AI机器学习入门与实战】训练模型、优化模型、部署模型
🍭实战篇
🔥 第八篇:【AI机器学习入门与实战】用户RFM模型聚类分层实战
🔥 第九篇:【AI机器学习入门与实战】使用OpenCV识别滑动验证码案例
🔥 第十篇:【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例
未完待续…

在机器学习中,又分为监督学习、无监督学习、半监督学习、强化学习和深度学习。

监督、无监督、半监督学习

机器学习根据数据集是否有标签,又分为监督学习、无监督学习、半监督学习。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7daO0Gcs-1686306684846)(image/image-20230603104813945.png)]

  1. 监督学习:训练数据集全部都有标签
  2. 无监督学习:训练数据集全部没有标签
  3. 半监督学习:训练数据集有的有标签,有的没有标签。

监督学习数据集全部都有标签,根据标签的特点,监督学习又分为回归问题和分类问题。

  1. 回归问题:标签是连续的数值。是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的。比如说电商场景中的销量预测、客户生命周期价值预测等。
  2. 分类问题:标签是离散型数值。就是将数据分为不同的类别(标签)。通常用于图像识别、文本分类等分类问题。

在这里插入图片描述

无监督学习应用于没有标签的数据集。它通过数据出发,自动寻找规律,通常应用在聚类、降维等有限场景中。

无监督学习聚类方法是一种将数据集中的对象分组的方法,分成多个不同的组。其目的是使组内对象相似度尽可能高,组间对象相似度尽可能低。

半监督学习是介于监督学习和无监督学习之间的一种学习方法,这种机器学习类型的应用通常是因为获取数据标签难度很高。它利用少量的带标签数据和大量的未标记数据来训练模型,以达到提高模型预测性能的目的。在半监督学习中,带标签数据通常是由领域专家手动标注的,而未标记数据则是从大量的无标签数据中获取的。

哪种监督学习更为常用?

监督学习是应用最广泛的机器学习算法,无监督学习在聚类场景中使用更多,例如 为用户做分组画像。半监督学习应用场景比较少,目前我还没遇见过,感兴趣的自行了解。

强化学习

强化学习与人类的学习方式最为相似。强化学习是一种通过试错的方式,从环境中学习最优决策策略的机器学习方法。智能体(agent)通过与环境交互,获得奖励信号来学习如何做出最好的决策。它通过反复的试错、不断的收集反馈,不断的学习,不断地训练使得它会变得越来越强。

强化学习和监督学习的差异在于:监督学习是从数据中学习,而强化学习是从环境给它的奖惩中学习。

强化学习在机器人、汽车自动驾驶领域应用广泛
在这里插入图片描述
举个小例子:人训练🐶,当人给🐶一个手势时,如果🐶正确执行了我们的指令,那我们就给它骨头奖励;如果🐶不执行我们的指令,那我们就给它一些惩罚,通过一定时间的反复训练,🐶就学会了执行人类的指令。这是一样的道理。
在这里插入图片描述

深度学习

科学家生物神经元的启发,照葫芦画瓢创建除了人工神经网络,然后发现这玩意还挺好用。神经网络的发展由最开始的单层神经网络发展到深层神经网络,而深层神经网络中,卷积神经网络可以说是大杀四方,它在语音识别、自然语言处理和计算机视觉领域被广泛应用。

深度学习是一种基于神经网络算法的机器学习技术,它通过多层神经网络来学习高级抽象特征并进行模式识别和预测。

深度学习擅长对非结构的数据集进行自动的复杂特征提取。它并不是一种独立于其他类型机器学习算法,它可以应用在监督学习、半监督学习和无监督学习和强化学习中。

神经网络是一种计算模型,它受到生物神经元的启发,通过多个神经元的组合和连接,实现对输入数据的处理和预测。

神经网络由多个神经元组成,每个神经元接收一组输入,并产生一个输出。神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。

  1. 输入层是神经网络的第一层,它接收输入数据,并将其传递到下一层。
  2. 隐藏层是神经网络的中间层,通过对输入数据进行加权和激活函数的处理,实现了对复杂特征的提取。
  3. 输出层是神经网络的最后一层,输出层将经过处理的数据转化为输出结果,并与实际结果进行比较,以计算损失函数并更新模型参数。
    在这里插入图片描述
    神经网络的工作原理可以分为前向传播和反向传播两个过程。

1、 前向传播:输入信号从输入层开始,经过一系列的加权求和和激活函数处理后,传递给下一层神经元,下一层神经元的输入是上一次神经元的输出,这个过程一直持续到输出层,得到最终的计算结果。
2、 反向传播:根据输出层的计算结果和实际目标值计算误差,然后按原路径反向传播误差,它通过将损失函数反向传播到神经网络中的每个神经元,以更新神经元的权重和偏置,以最小化误差。这个过程可以通过梯度下降等优化算法实现。

通过不断地前向传播和反向传播,神经网络学会了从输入数据中提取有用的特征,使得我们的模型精度逐渐提升,以完成分类、预测等任务。

神经网络在图像识别、自然语言处理、推荐系统等领域中取得了显著的成果。在图像识别领域,(CNN)卷积神经网络通过对图像进行卷积和池化等操作,实现对图像的特征提取和分类。在自然语言处理领域,(RNN)循环神经网络通过对文本序列进行处理,实现对文本的理解和生成。在推荐系统领域,(DNN)深度神经网络通过对用户和物品的数据进行处理和分析,实现对用户的个性化推荐和优化。


🎉 如果喜欢这篇文章,点赞👍 收藏关注 ✅ 哦,创作不易,感谢!😀

请添加图片描述

相关文章:

【AI机器学习入门与实战】机器学习算法都有哪些分类?

👍【AI机器学习入门与实战】目录 🍭基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入…...

React之hooks

Hooks函数 1.useState():状态钩子。纯函数组件没有状态,用于为函数组件引入state状态, 并进行状态数据的读写操作。 const [state, setState] useState(initialValue); // state:初始的状态属性,指向状态当前值,类似…...

1.监控分布式--zabbix

文章目录 监控分布式-zabbix、prometheus概念工作原理功能组件部署zabbix安装Nginx和PHP环境部署数据库编码安装zabbix编译安装zabbix server客户端安装zabbix agent服务 监控分布式-zabbix、prometheus 利用一个优秀的监控软件,我们可以: 通过一个友好的界面进行…...

java stream 多个集合去重取交集

文章目录 背景案例代码 背景 原因是需要从表里查多个集合list,然后取多个集合得交集,并且元素是对象,所以使用了下面的方式,当然方式有很多种,仅供参考。 案例 下面提供了一段多个集合join取交集的例子,…...

给LLM装上知识:从LangChain+LLM的本地知识库问答到LLM与知识图谱的结合

第一部分 什么是LangChain:连接本地知识库与LLM的桥梁 作为一个 LLM 应用框架,LangChain 支持调用多种不同模型,提供相对统一、便捷的操作接口,让模型即插即用,这是其GitHub地址,其架构如下图所示 (点此查…...

视频与AI,与进程交互(二) pytorch 极简训练自己的数据集并识别

目标学习任务 检测出已经分割出的图像的分类 2 使用pytorch pytorch 非常简单就可以做到训练和加载 2.1 准备数据 如上图所示,用来训练的文件放在了train中,验证的文件放在val中,train.txt 和 val.txt 分别放文件名称和分类类别&#xff…...

LLM - 第2版 ChatGLM2-6B (General Language Model) 的工程配置

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/131445696 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优…...

从0开始,手写MySQL事务

说在前面:从0开始,手写MySQL的学习价值 尼恩曾经指导过的一个7年经验小伙,凭借精通Mysql, 搞定月薪40K。 从0开始,手写一个MySQL的学习价值在于: 可以深入地理解MySQL的内部机制和原理,Mysql可谓是面试的…...

React中useState的setState方法请求了好多次

1、问题描述 最近在写react的时候碰到了一个很奇怪的问题。 可以看到那个getXXX()的方法一直不断的被调用,网页一直请求,根本停不下来了。 2、产生原因 要弄明白这个原因,首先要先了解一下react生命周期。 react是组件式的编程,一…...

【MYSQL基础】基础命令介绍

基础命令 MYSQL注释方式 -- 单行注释/* 多行注释 哈哈哈哈哈 哈哈哈哈 */连接数据库 mysql -u root -p12345678退出数据库连接 使用exit;命令可以退出连接 查询MYSQL版本 mysql> select version(); ----------- | version() | ----------- | 8.0.27 | ----------- 1…...

多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型,matlab代码回归预测,多变量输入模型,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质…...

校园wifi网页认证登录入口

很多校园wifi网页认证登录入口是1.1.1.1 连上校园网在浏览器写上http://1.1.1.1就进入了校园网 使 用 说 明 一、帐户余额 < 0.00元时&#xff0c;帐号被禁用&#xff0c;需追加网费。 二、在计算中心机房上机的用户&#xff0c;登录时请选择新建帐号时给您指定的NT域&…...

[SpringBoot]Spring Security框架

目录 关于Spring Security框架 Spring Security框架的依赖项 Spring Security框架的典型特征 关于Spring Security的配置 关于默认的登录页 关于请求的授权访问&#xff08;访问控制&#xff09; 使用自定义的账号登录 使用数据库中的账号登录 关于密码编码器 使用BCry…...

Unity 之 抖音小游戏本地数据最新存储方法分享

Unity 之 抖音小游戏本地数据最新存储方法分享 一、抖音小游戏文件存储系统背景二、文件存储系统的使用方法2.1 初始化2.1 创建目录2.3 存储数据2.4 删除目录/文件2.5 其他相关操作 三&#xff0c;小结 抖音小游戏是一种基于抖音平台开发的小型游戏&#xff0c;与传统的 APP 不…...

逍遥自在学C语言 | 函数初级到高级解析

前言 函数是C语言中的基本构建块之一&#xff0c;它允许我们将代码组织成可重用、模块化的单元。 本文将逐步介绍C语言函数的基础概念、参数传递、返回值、递归以及内联函数和匿名函数。 一、人物简介 第一位闪亮登场&#xff0c;有请今后会一直教我们C语言的老师 —— 自在…...

Elastic 推出 Elastic AI 助手

作者&#xff1a;Mike Nichols Elastic 推出了 Elastic AI Assistant&#xff0c;这是一款由 ESRE 提供支持的开放式、生成式 AI 助手&#xff0c;旨在使网络安全民主化并支持各种技能水平的用户。 最近发布的 Elasticsearch Relevance Engine™ (ESRE™) 提供了用于创建高度相…...

【数据库】MySQL安装(最新图文保姆级别超详细版本介绍)

1.总共两部分&#xff08;第二部可省略&#xff09; 安装mysql体验mysql环境变量配置 1.1安装mysql 1.输入官网地址https://www.mysql.com/ 下载完成后&#xff0c;我们双击打开我们的下载文件 打开后的界面&#xff0c;如图所示 我们选择custom&#xff0c;点击nex…...

前端使用pdf-lib库实现pdf合并,window.open预览合并后的pdf

最近出差开了好多发票&#xff0c;写了一个pdf合并网站&#xff0c;用于把多张发票pdf合并成一张&#xff0c;方便打印 使用pdf-lib这个库实现的pdf合并功能&#xff0c;预览使用的是浏览器自身查看pdf功能 源码 网页地址 https://zqy233.github.io/PDF-merge/ <!DOCTYPE h…...

计算机网络相关知识点总结(二)

比特bit是计算机中数据量的最小单位,可简记为b。字节Byte也是计算机中数据量的单位,可简记为B,1B8bit。常用的数据量单位还有kB、MB、GB、TB等,其中k、M、G、T的数值分别为 2 10 2^{10} 210, 2 20 2^{20} 220, 2 30 2^{30} 230, 2 40 2^{40} 240。 K, M, G, T 分别对应以下…...

Redmine与Gitlab整合(实战版)

网上查了很多文章&#xff0c;总结一下。 安装过程略。可参考&#xff1a;(84条消息) Redmine与Gitlab功能集成_redmine gitlab_羽之大公公的博客-CSDN博客 配置集成的方法&#xff0c;参考&#xff1a; Redmine与GitLab集成 (ngui.cc) 修改ssh-key密码的方法&#xff0c;参…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...

CppCon 2015 学习:REFLECTION TECHNIQUES IN C++

关于 Reflection&#xff08;反射&#xff09; 这个概念&#xff0c;总结一下&#xff1a; Reflection&#xff08;反射&#xff09;是什么&#xff1f; 反射是对类型的自我检查能力&#xff08;Introspection&#xff09; 可以查看类的成员变量、成员函数等信息。反射允许枚…...

GeoServer发布PostgreSQL图层后WFS查询无主键字段

在使用 GeoServer&#xff08;版本 2.22.2&#xff09; 发布 PostgreSQL&#xff08;PostGIS&#xff09;中的表为地图服务时&#xff0c;常常会遇到一个小问题&#xff1a; WFS 查询中&#xff0c;主键字段&#xff08;如 id&#xff09;莫名其妙地消失了&#xff01; 即使你在…...

Qt学习及使用_第1部分_认识Qt---Qt开发基本流程

前言 学以致用,通过QT框架的学习,一边实践,一边探索编程的方方面面. 参考书:<Qt 6 C开发指南>(以下称"本书") 标识说明:概念用粗体倾斜.重点内容用(加粗黑体)---重点内容(红字)---重点内容(加粗红字), 本书原话内容用深蓝色标识,比较重要的内容用加粗倾…...