【AI机器学习入门与实战】机器学习算法都有哪些分类?
👍【AI机器学习入门与实战】目录
🍭基础篇
🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍
🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解
🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类?
🔥 第四篇:【AI机器学习入门与实战】数据从何而来?
🔥 第五篇:【AI机器学习入门与实战】数据预处理的招式:闪电五连鞭!
🔥 第六篇:【AI机器学习入门与实战】选择合适的算法:选择比努力重要!
🔥 第七篇:【AI机器学习入门与实战】训练模型、优化模型、部署模型
🍭实战篇
🔥 第八篇:【AI机器学习入门与实战】用户RFM模型聚类分层实战
🔥 第九篇:【AI机器学习入门与实战】使用OpenCV识别滑动验证码案例
🔥 第十篇:【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例
未完待续…
在机器学习中,又分为监督学习、无监督学习、半监督学习、强化学习和深度学习。
监督、无监督、半监督学习
机器学习根据数据集是否有标签,又分为监督学习、无监督学习、半监督学习。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7daO0Gcs-1686306684846)(image/image-20230603104813945.png)]](https://img-blog.csdnimg.cn/994f179eae1841bcb504494b31c4e165.png#pic_center)
- 监督学习:训练数据集全部都有标签
- 无监督学习:训练数据集全部没有标签
- 半监督学习:训练数据集有的有标签,有的没有标签。
监督学习数据集全部都有标签,根据标签的特点,监督学习又分为回归问题和分类问题。
- 回归问题:标签是连续的数值。是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的。比如说电商场景中的销量预测、客户生命周期价值预测等。
- 分类问题:标签是离散型数值。就是将数据分为不同的类别(标签)。通常用于图像识别、文本分类等分类问题。

无监督学习应用于没有标签的数据集。它通过数据出发,自动寻找规律,通常应用在聚类、降维等有限场景中。
无监督学习聚类方法是一种将数据集中的对象分组的方法,分成多个不同的组。其目的是使组内对象相似度尽可能高,组间对象相似度尽可能低。
半监督学习是介于监督学习和无监督学习之间的一种学习方法,这种机器学习类型的应用通常是因为获取数据标签难度很高。它利用少量的带标签数据和大量的未标记数据来训练模型,以达到提高模型预测性能的目的。在半监督学习中,带标签数据通常是由领域专家手动标注的,而未标记数据则是从大量的无标签数据中获取的。
哪种监督学习更为常用?
监督学习是应用最广泛的机器学习算法,无监督学习在聚类场景中使用更多,例如 为用户做分组画像。半监督学习应用场景比较少,目前我还没遇见过,感兴趣的自行了解。
强化学习
强化学习与人类的学习方式最为相似。强化学习是一种通过试错的方式,从环境中学习最优决策策略的机器学习方法。智能体(agent)通过与环境交互,获得奖励信号来学习如何做出最好的决策。它通过反复的试错、不断的收集反馈,不断的学习,不断地训练使得它会变得越来越强。
强化学习和监督学习的差异在于:监督学习是从数据中学习,而强化学习是从环境给它的奖惩中学习。
强化学习在机器人、汽车自动驾驶领域应用广泛。

举个小例子:人训练🐶,当人给🐶一个手势时,如果🐶正确执行了我们的指令,那我们就给它骨头奖励;如果🐶不执行我们的指令,那我们就给它一些惩罚,通过一定时间的反复训练,🐶就学会了执行人类的指令。这是一样的道理。

深度学习
科学家生物神经元的启发,照葫芦画瓢创建除了人工神经网络,然后发现这玩意还挺好用。神经网络的发展由最开始的单层神经网络发展到深层神经网络,而深层神经网络中,卷积神经网络可以说是大杀四方,它在语音识别、自然语言处理和计算机视觉领域被广泛应用。
深度学习是一种基于神经网络算法的机器学习技术,它通过多层神经网络来学习高级抽象特征并进行模式识别和预测。
深度学习擅长对非结构的数据集进行自动的复杂特征提取。它并不是一种独立于其他类型机器学习算法,它可以应用在监督学习、半监督学习和无监督学习和强化学习中。
神经网络是一种计算模型,它受到生物神经元的启发,通过多个神经元的组合和连接,实现对输入数据的处理和预测。
神经网络由多个神经元组成,每个神经元接收一组输入,并产生一个输出。神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。
- 输入层是神经网络的第一层,它接收输入数据,并将其传递到下一层。
- 隐藏层是神经网络的中间层,通过对输入数据进行加权和激活函数的处理,实现了对复杂特征的提取。
- 输出层是神经网络的最后一层,输出层将经过处理的数据转化为输出结果,并与实际结果进行比较,以计算损失函数并更新模型参数。

神经网络的工作原理可以分为前向传播和反向传播两个过程。
1、 前向传播:输入信号从输入层开始,经过一系列的加权求和和激活函数处理后,传递给下一层神经元,下一层神经元的输入是上一次神经元的输出,这个过程一直持续到输出层,得到最终的计算结果。
2、 反向传播:根据输出层的计算结果和实际目标值计算误差,然后按原路径反向传播误差,它通过将损失函数反向传播到神经网络中的每个神经元,以更新神经元的权重和偏置,以最小化误差。这个过程可以通过梯度下降等优化算法实现。
通过不断地前向传播和反向传播,神经网络学会了从输入数据中提取有用的特征,使得我们的模型精度逐渐提升,以完成分类、预测等任务。
神经网络在图像识别、自然语言处理、推荐系统等领域中取得了显著的成果。在图像识别领域,(CNN)卷积神经网络通过对图像进行卷积和池化等操作,实现对图像的特征提取和分类。在自然语言处理领域,(RNN)循环神经网络通过对文本序列进行处理,实现对文本的理解和生成。在推荐系统领域,(DNN)深度神经网络通过对用户和物品的数据进行处理和分析,实现对用户的个性化推荐和优化。
🎉 如果喜欢这篇文章,点赞👍 收藏⭐ 关注 ✅ 哦,创作不易,感谢!😀

相关文章:
【AI机器学习入门与实战】机器学习算法都有哪些分类?
👍【AI机器学习入门与实战】目录 🍭基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入…...
React之hooks
Hooks函数 1.useState():状态钩子。纯函数组件没有状态,用于为函数组件引入state状态, 并进行状态数据的读写操作。 const [state, setState] useState(initialValue); // state:初始的状态属性,指向状态当前值,类似…...
1.监控分布式--zabbix
文章目录 监控分布式-zabbix、prometheus概念工作原理功能组件部署zabbix安装Nginx和PHP环境部署数据库编码安装zabbix编译安装zabbix server客户端安装zabbix agent服务 监控分布式-zabbix、prometheus 利用一个优秀的监控软件,我们可以: 通过一个友好的界面进行…...
java stream 多个集合去重取交集
文章目录 背景案例代码 背景 原因是需要从表里查多个集合list,然后取多个集合得交集,并且元素是对象,所以使用了下面的方式,当然方式有很多种,仅供参考。 案例 下面提供了一段多个集合join取交集的例子,…...
给LLM装上知识:从LangChain+LLM的本地知识库问答到LLM与知识图谱的结合
第一部分 什么是LangChain:连接本地知识库与LLM的桥梁 作为一个 LLM 应用框架,LangChain 支持调用多种不同模型,提供相对统一、便捷的操作接口,让模型即插即用,这是其GitHub地址,其架构如下图所示 (点此查…...
视频与AI,与进程交互(二) pytorch 极简训练自己的数据集并识别
目标学习任务 检测出已经分割出的图像的分类 2 使用pytorch pytorch 非常简单就可以做到训练和加载 2.1 准备数据 如上图所示,用来训练的文件放在了train中,验证的文件放在val中,train.txt 和 val.txt 分别放文件名称和分类类别ÿ…...
LLM - 第2版 ChatGLM2-6B (General Language Model) 的工程配置
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/131445696 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优…...
从0开始,手写MySQL事务
说在前面:从0开始,手写MySQL的学习价值 尼恩曾经指导过的一个7年经验小伙,凭借精通Mysql, 搞定月薪40K。 从0开始,手写一个MySQL的学习价值在于: 可以深入地理解MySQL的内部机制和原理,Mysql可谓是面试的…...
React中useState的setState方法请求了好多次
1、问题描述 最近在写react的时候碰到了一个很奇怪的问题。 可以看到那个getXXX()的方法一直不断的被调用,网页一直请求,根本停不下来了。 2、产生原因 要弄明白这个原因,首先要先了解一下react生命周期。 react是组件式的编程,一…...
【MYSQL基础】基础命令介绍
基础命令 MYSQL注释方式 -- 单行注释/* 多行注释 哈哈哈哈哈 哈哈哈哈 */连接数据库 mysql -u root -p12345678退出数据库连接 使用exit;命令可以退出连接 查询MYSQL版本 mysql> select version(); ----------- | version() | ----------- | 8.0.27 | ----------- 1…...
多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型
文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型,matlab代码回归预测,多变量输入模型,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质…...
校园wifi网页认证登录入口
很多校园wifi网页认证登录入口是1.1.1.1 连上校园网在浏览器写上http://1.1.1.1就进入了校园网 使 用 说 明 一、帐户余额 < 0.00元时,帐号被禁用,需追加网费。 二、在计算中心机房上机的用户,登录时请选择新建帐号时给您指定的NT域&…...
[SpringBoot]Spring Security框架
目录 关于Spring Security框架 Spring Security框架的依赖项 Spring Security框架的典型特征 关于Spring Security的配置 关于默认的登录页 关于请求的授权访问(访问控制) 使用自定义的账号登录 使用数据库中的账号登录 关于密码编码器 使用BCry…...
Unity 之 抖音小游戏本地数据最新存储方法分享
Unity 之 抖音小游戏本地数据最新存储方法分享 一、抖音小游戏文件存储系统背景二、文件存储系统的使用方法2.1 初始化2.1 创建目录2.3 存储数据2.4 删除目录/文件2.5 其他相关操作 三,小结 抖音小游戏是一种基于抖音平台开发的小型游戏,与传统的 APP 不…...
逍遥自在学C语言 | 函数初级到高级解析
前言 函数是C语言中的基本构建块之一,它允许我们将代码组织成可重用、模块化的单元。 本文将逐步介绍C语言函数的基础概念、参数传递、返回值、递归以及内联函数和匿名函数。 一、人物简介 第一位闪亮登场,有请今后会一直教我们C语言的老师 —— 自在…...
Elastic 推出 Elastic AI 助手
作者:Mike Nichols Elastic 推出了 Elastic AI Assistant,这是一款由 ESRE 提供支持的开放式、生成式 AI 助手,旨在使网络安全民主化并支持各种技能水平的用户。 最近发布的 Elasticsearch Relevance Engine™ (ESRE™) 提供了用于创建高度相…...
【数据库】MySQL安装(最新图文保姆级别超详细版本介绍)
1.总共两部分(第二部可省略) 安装mysql体验mysql环境变量配置 1.1安装mysql 1.输入官网地址https://www.mysql.com/ 下载完成后,我们双击打开我们的下载文件 打开后的界面,如图所示 我们选择custom,点击nex…...
前端使用pdf-lib库实现pdf合并,window.open预览合并后的pdf
最近出差开了好多发票,写了一个pdf合并网站,用于把多张发票pdf合并成一张,方便打印 使用pdf-lib这个库实现的pdf合并功能,预览使用的是浏览器自身查看pdf功能 源码 网页地址 https://zqy233.github.io/PDF-merge/ <!DOCTYPE h…...
计算机网络相关知识点总结(二)
比特bit是计算机中数据量的最小单位,可简记为b。字节Byte也是计算机中数据量的单位,可简记为B,1B8bit。常用的数据量单位还有kB、MB、GB、TB等,其中k、M、G、T的数值分别为 2 10 2^{10} 210, 2 20 2^{20} 220, 2 30 2^{30} 230, 2 40 2^{40} 240。 K, M, G, T 分别对应以下…...
Redmine与Gitlab整合(实战版)
网上查了很多文章,总结一下。 安装过程略。可参考:(84条消息) Redmine与Gitlab功能集成_redmine gitlab_羽之大公公的博客-CSDN博客 配置集成的方法,参考: Redmine与GitLab集成 (ngui.cc) 修改ssh-key密码的方法,参…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果