当前位置: 首页 > news >正文

10分钟学会python对接【OpenAI API篇】

今天学习 OpenAI API,你将能够访问 OpenAI 的强大模型,例如用于自然语言的 GPT-3、用于将自然语言翻译为代码的 Codex 以及用于创建和编辑原始图像的 DALL-E。

在这里插入图片描述

首先获取生成 API 密钥

在我们开始使用 OpenAI API 之前,我们需要登录我们的 OpenAI 帐户并生成我们的API 密钥。

注意,OpenAI 不会在生成 API 密钥后再次显示它,因此请及时复制你的 API 密钥并保存。我将创建一个名为 OPENAI_API_KEY 的环境变量,它将包含我的 API 密钥并将在下一节中使用。

使用 Python接入 OpenAI API

要与 OpenAI API 交互,我们需要通过运行以下命令来安装官方OpenAI包。

pip install openai

1.文本生成

文本生成可用于文字鉴别、文本生成、自动对话、转换、摘要等。要使用它,我们必须使用completion endpoint并为模型提供触发指令,然后模型将生成匹配上下文/模式的文本。

假设我们要对以下文本进行鉴别,我们向AI输入指令(中英文都可以):

判断以下Mike的发言情绪是正面、中立还是负面: Mike:我不喜欢做作业! Sentiment:
import os import openai
openai.api_key = os.getenv("OPENAI_API_KEY") prompt =  """
Decide whether a Mike's sentiment is positive, neutral, or negative.Mike: I don't like homework!
Sentiment:
""" 
response = openai.Completion.create( model="text-davinci-003", prompt=prompt, max_tokens=100, temperature=0  )  print(response)

根据 OpenAI 文档,GPT-3 模型是与文本生成的endpoint一起使用。 这就是我们在此示例中使用模型 text-davinci-003 的原因。

以下是返回值的部分打印:

{"choices": [{"finish_reason": "stop","index": 0,"logprobs": null,"text": "Negative"}],
...
}

在此示例中,推文的情绪被归类为负面Negative。

让我们看一下这个例子中使用的参数:

model :要使用的模型的 ID(在这里你可以看到所有可用的模型)

Prompt:生成结果的触发指令

max_token:完成时生成的最大token数量(这里可以看到OpenAI使用的tokenizer)

temperature:要使用的采样策略。 接近 1 的值会给模型带来更多风险/创造力,而接近 0 的值会生成明确定义的答案。

2. 代码生成

代码生成与文本生成类似,但这里我们使用 Codex 模型来理解和生成代码。

Codex 模型系列是经过自然语言和数十亿行代码训练的 GPT-3 系列的后代。 借助 Codex,我们可以将注释转化为代码、重写代码以提高效率等等。

让我们使用模型 code-davinci-002 和下面的触发指令生成 Python 代码。

import os
import openaiopenai.api_key = os.getenv("OPENAI_API_KEY")response = openai.Completion.create(model="code-davinci-002",prompt="\"\"\"\nCreate an array of weather temperatures for Shanghai\n\"\"\"",temperature=0,max_tokens=256,top_p=1,frequency_penalty=0,presence_penalty=0
)print(response)

以下是返回值的部分打印:

{"choices": [{"finish_reason": "stop","index": 0,"logprobs": null,"text": "\n\nimport numpy as np\n\ndef create_temperatures(n):\n    \"\"\"\n    Create an array of weather temperatures for Shanghai\n    \"\"\"\n    temperatures = np.random.uniform(low=14.0, high=20.0, size=n)\n    return temperatures"}],
...}
}

把text部分重新显示格式化一下,你就会看到规整的代码生成了:

import numpy as npdef create_temperatures(n):temperatures = np.random.uniform(low=14.0, high=20.0, size=n)return temperatures

3. 图像生成

我们可以使用 DALL-E 模型生成图像,我们使用图像生成endpoint并提供文本指令。

以下是我的测试指令(我们在指令中提供的细节越多,我们就越有可能获得我们想要的结果)。

例如: 一只毛茸茸的蓝眼睛白猫坐在花篮里,可爱地抬头看着镜头

import openairesponse = openai.Image.create(prompt="A fluffy white cat with blue eyes sitting in a basket of flowers, looking up adorably at the camera",n=1,size="1024x1024"
)
image_url = response['data'][0]['url']
print(image_url)

即可生成图片。
当然更有趣的是,还可以使用images编辑图像并生成原图像的调整。

详细请查看官方文档:openAI官方文档

相关文章:

10分钟学会python对接【OpenAI API篇】

今天学习 OpenAI API,你将能够访问 OpenAI 的强大模型,例如用于自然语言的 GPT-3、用于将自然语言翻译为代码的 Codex 以及用于创建和编辑原始图像的 DALL-E。 首先获取生成 API 密钥 在我们开始使用 OpenAI API 之前,我们需要登录我们的 Op…...

2023美赛必须注意事项

文章目录首页部分要求竞赛期间题目查看题目下载论文要求比赛提示控制号提交解决方案更多注意事项首页部分要求 具体如下: 我提取一些关键词如下: 第一页:摘要页字体要求:12点的 Times New Roman 字体请勿在此页面或任何页面上…...

基于微信小程序的智能招聘小程序

文末联系获取源码 开发语言:Java 框架:ssm JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7/8.0 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9 浏览器…...

Java文件操作和I/O

Java 流(Stream)、文件(File)和IOJava.io 包几乎包含了所有操作输入、输出需要的类。所有这些流类代表了输入源和输出目标。Java.io 包中的流支持很多种格式,比如:基本类型、对象、本地化字符集等等。一个流可以理解为一个数据的序列。输入流表示从一个源…...

QT项目_RPC(进程间通讯)

QT项目_RPC(进程间通讯) 前言: 两个进程间通信、或是说两个应用程序之间通讯。实际情况是在QT开发的一个项目中,里面包含两个子程序,子程序有单独的界面和应用逻辑,这两个子程序跑起来之后需要一些数据的交互,例如&…...

移动硬盘文件丢失怎么恢复?

在我们的日常工作、学习和生活都离不开各种数据。每天都会接收或处理各种数据,尤其是做设计、自媒体、多媒体设计的人。移动硬盘成为我们常备的存储工具,但有使用就会伴随着意外情况的发生,这将导致移动硬盘上数据的丢失,比如误删…...

什么是同步整流和异步整流

在设计降压型DCDC电路的时候,经常会听到同步整流(synchronous)和异步整流(asynchronous)。那么什么是同步整流,什么是异步整流呢从这两种电路的拓扑来看,异步整流型外围有一个续流二极管&#x…...

关于PYTHON Enclosing 的一个小问题

问题分析 以下是一段每隔半小时重复执行测试用例的脚本,func是传入的测试函数,在执行func前后,会打印操作次数 def repeat(func, action):try:log.info(u******开始并发%s****** % action)thread_list []for i in range(repeat_count):def…...

LabVIEW错误-2147220623:最大内存块属性不存在

LabVIEW错误-2147220623:最大内存块属性不存在在使用NI Linux实时操作系统目标中,使用系统属性节点和分布式系统管理器(DSM),但遇到一些问题:它未正确报告系统上的可用物理内存量。在NI Linux实时系统上出现…...

图的总复习

一、图的定义Graph 图是由顶点vertex集合及顶点间关系集合组成的一种数据结构: 顶点的集合 和 边的集合 二、无向图 用(x,y)表示两个顶点x和y之间的一条边(edge) 边是无方向的 N{V,E},V{0…...

测试流程记录

1,需求评审 2,技术方案评审 3,编写测试用例 编写需求分析 编写测试用例 编写冒烟case 4,用例评审 5,提测 提测前给开发执行冒烟case 6,测试 测试完成前约产品验收时间 7,验收 跟进验收问题…...

Mysql主从架构与实例

mysql的主从架构 MySQL主从架构是一种常见的数据库高可用性解决方案,它通常由一个主数据库和多个从数据库组成。主数据库用于处理写入请求和读取请求,从数据库则用于处理只读请求。 在主从架构中,主数据库记录所有数据更改并将这些更改同步…...

webpack(高级)--Tapable

webpack 我们直到webpack中有两个非常重要的类Compiler和Compilation 他们通过注入插件的方式 来监听webpack的所有声明周期 插件的注入是通过创建Tapable库中的各种Hook的实例来得到 Tapable Tapable中的Hook分为同步与异步 同步 SyncHook SyncBailHook SyncWaterfallHook…...

Python常见类型转换合集

近期在工作中常常接触到各种转换,如字符串转byte,byte转字符串,还有byte数组转成报文能接纳的格式(bin格式的十六进制)。故有必要系统的总结一下Python中常见的类型转换。 一:常见类型的概念 类型举例说明…...

知识点(1)

什么是跨域请求? 当前发起请求的域与该请求指向的资源所在的域不一样,凡是发送请求的url的协议、域名、端口号三者之间任意一者与当前页面地址不同的请求。这里的域指的是:我们认为若协议域名端口号均相同,那么就是同域。 get和…...

Tomcat源码分析-启动分析(三) Catalina启动

在上一篇文章中,我们分析了tomcat的初始化过程,是由Bootstrap反射调用Catalina的load方法完成tomcat的初始化,包括server.xml的解析、实例化各大组件、初始化组件等逻辑。那么tomcat又是如何启动webapp应用,又是如何加载应用程序的…...

程序员必备的软技能-金字塔原理拆解

前言 日常工作中,常常因为思维、表达方式不对产生不想要的结果: 写了一个小时的周报,领导却不满意?跟团队讲了半天自己的想法,可别人就是没理解?看了很多知识、信息,却一点也没记住&#xff1…...

基金详细介绍

投资回报率 利润 / 投资总额(第一次投资回报率 5%) 关注南方理财 60 天债券 B(202306)万元收益 50—60 元 购基七步曲: 风险测试基本知识交易指南查看业绩了解评级在线下单赎回 基金类型: 积极成长型基金…...

媒体邀约之企业如何加强品牌的宣传力度

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。胡老师分享了许多媒体传播方面的经验,今天就跟大家分享下我对企业宣传方面的看法。企业如何加强品牌的宣传力度:1,网络宣传在社交媒体上建立企业账户&am…...

【SpringBoot】75、SpringBoot中使用spring-retry轻松解决重试

在日常开发过程中,难免会与第三方接口发生交互,例如:短信发送、远程服务调用、争抢锁等场景,当正常调用发生异常时,例如:网络抖动,这些间歇性的异常在一段时候之后会自行恢复,程序为…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

条件运算符

C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...