当前位置: 首页 > news >正文

PyTorch从零开始实现Transformer

文章目录

    • 自注意力
    • Transformer块
    • 编码器
    • 解码器块
    • 解码器
    • 整个Transformer
    • 参考来源
    • 全部代码(可直接运行)

自注意力

计算公式

在这里插入图片描述

代码实现


class SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size),  "Embed size needs  to  be div by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads*self.head_dim, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0] # the number of training examplesvalue_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]# Split embedding into self.heads piecesvalues = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # 矩阵乘法,使用爱因斯坦标记法# queries shape: (N, query_len, heads, heads_dim)# keys shape: (N, key_len, heads, heads_dim)# energy shape: (N, heads, query_len, key_len)if mask is not None:energy = energy.masked_fill(mask==0, float("-1e20")) #Fills elements of self tensor with value where mask is Trueattention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads*self.head_dim) # 矩阵乘法,使用爱因斯坦标记法einsum# attention shape: (N, heads, query_len, key_len)# values shape: (N, value_len, heads, head_dim)# after einsum (N, query_len, heads, head_dim) then flatten last two dimensionsout = self.fc_out(out)return out

Transformer块

我们把Transfomer块定义为如下图所示的结构,这个Transformer块在编码器和解码器中都有出现过。
在这里插入图片描述

代码实现

class TransformerBlock(nn.Module):def __init__(self, embed_size, heads, dropout, forward_expansion):super(TransformerBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm1 = nn.LayerNorm(embed_size)self.norm2 = nn.LayerNorm(embed_size)self.feed_forward = nn.Sequential(nn.Linear(embed_size, forward_expansion*embed_size),nn.ReLU(),nn.Linear(forward_expansion*embed_size, embed_size))self.dropout = nn.Dropout(dropout)def forward(self, value, key, query, mask):attention = self.attention(value, key, query, mask)x = self.dropout(self.norm1(attention + query))forward = self.feed_forward(x)out = self.dropout(self.norm2(forward + x))return out

编码器

编码器结构如下所示,Inputs经过Input Embedding 和Positional Encoding之后,通过多个Transformer块

在这里插入图片描述

代码实现

class Encoder(nn.Module):def __init__(self, src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length):super(Encoder, self).__init__()self.embed_size = embed_sizeself.device = deviceself.word_embedding = nn.Embedding(src_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([TransformerBlock(embed_size,heads,dropout=dropout,forward_expansion=forward_expansion)for _ in range(num_layers)])self.dropout = nn.Dropout(dropout)def forward(self, x, mask):N, seq_lengh = x.shapepositions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))for layer in self.layers:out = layer(out, out, out, mask)return out

解码器块

解码器块结构如下图所示

在这里插入图片描述

代码实现

class DecoderBlock(nn.Module):def __init__(self, embed_size, heads, forward_expansion, dropout, device):super(DecoderBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm = nn.LayerNorm(embed_size)self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)self.dropout = nn.Dropout(dropout)def forward(self, x, value, key, src_mask, trg_mask):attention = self.attention(x, x, x, trg_mask)query = self.dropout(self.norm(attention + x))out = self.transformer_block(value, key, query, src_mask)return out

解码器

解码器块加上word embedding 和 positional embedding之后构成解码器

在这里插入图片描述

代码实现

class Decoder(nn.Module):def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length):super(Decoder, self).__init__()self.device = deviceself.word_embedding = nn.Embedding(trg_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([DecoderBlock(embed_size, heads, forward_expansion, dropout, device)for _ in range(num_layers)])self.fc_out = nn.Linear(embed_size, trg_vocab_size)self.dropout = nn.Dropout(dropout)def forward(self, x, enc_out, src_mask, trg_mask):N, seq_length = x.shapepositions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))for layer in self.layers:x = layer(x, enc_out, enc_out, src_mask, trg_mask)out = self.fc_out(x)return out

整个Transformer

在这里插入图片描述

代码实现

class Transformer(nn.Module):def __init__(self,src_vocab_size, trg_vocab_size,src_pad_idx,trg_pad_idx,embed_size=256,num_layers=6,forward_expansion=4,heads=8,dropout=0,device="cuda",max_length=100):super(Transformer, self).__init__()self.encoder = Encoder(src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length)self.decoder = Decoder(trg_vocab_size,embed_size,num_layers,heads,forward_expansion,dropout,device,max_length)self.src_pad_idx = src_pad_idxself.trg_pad_idx = trg_pad_idxself.device = devicedef make_src_mask(self, src):src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)#(N, 1, 1, src_len)return src_mask.to(self.device)def make_trg_mask(self, trg):N, trg_len = trg.shapetrg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(N, 1, trg_len, trg_len)return trg_mask.to(self.device)def forward(self, src, trg):src_mask = self.make_src_mask(src)trg_mask = self.make_trg_mask(trg)enc_src = self.encoder(src, src_mask)out = self.decoder(trg, enc_src, src_mask,  trg_mask)return out

参考来源

[1] https://www.youtube.com/watch?v=U0s0f995w14
[2] https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/transformer_from_scratch/transformer_from_scratch.py

[3] https://arxiv.org/abs/1706.03762
[4] https://www.youtube.com/watch?v=pkVwUVEHmfI

全部代码(可直接运行)

import torch
import torch.nn as nnclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size),  "Embed size needs  to  be div by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads*self.head_dim, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0] # the number of training examplesvalue_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]# Split embedding into self.heads piecesvalues = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])# queries shape: (N, query_len, heads, heads_dim)# keys shape: (N, key_len, heads, heads_dim)# energy shape: (N, heads, query_len, key_len)if mask is not None:energy = energy.masked_fill(mask==0, float("-1e20")) #Fills elements of self tensor with value where mask is Trueattention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads*self.head_dim)# attention shape: (N, heads, query_len, key_len)# values shape: (N, value_len, heads, head_dim)# after einsum (N, query_len, heads, head_dim) then flatten last two dimensionsout = self.fc_out(out)return outclass TransformerBlock(nn.Module):def __init__(self, embed_size, heads, dropout, forward_expansion):super(TransformerBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm1 = nn.LayerNorm(embed_size)self.norm2 = nn.LayerNorm(embed_size)self.feed_forward = nn.Sequential(nn.Linear(embed_size, forward_expansion*embed_size),nn.ReLU(),nn.Linear(forward_expansion*embed_size, embed_size))self.dropout = nn.Dropout(dropout)def forward(self, value, key, query, mask):attention = self.attention(value, key, query, mask)x = self.dropout(self.norm1(attention + query))forward = self.feed_forward(x)out = self.dropout(self.norm2(forward + x))return outclass Encoder(nn.Module):def __init__(self, src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length):super(Encoder, self).__init__()self.embed_size = embed_sizeself.device = deviceself.word_embedding = nn.Embedding(src_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([TransformerBlock(embed_size,heads,dropout=dropout,forward_expansion=forward_expansion)for _ in range(num_layers)])self.dropout = nn.Dropout(dropout)def forward(self, x, mask):N, seq_lengh = x.shapepositions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))for layer in self.layers:out = layer(out, out, out, mask)return outclass DecoderBlock(nn.Module):def __init__(self, embed_size, heads, forward_expansion, dropout, device):super(DecoderBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm = nn.LayerNorm(embed_size)self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)self.dropout = nn.Dropout(dropout)def forward(self, x, value, key, src_mask, trg_mask):attention = self.attention(x, x, x, trg_mask)query = self.dropout(self.norm(attention + x))out = self.transformer_block(value, key, query, src_mask)return outclass Decoder(nn.Module):def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length):super(Decoder, self).__init__()self.device = deviceself.word_embedding = nn.Embedding(trg_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([DecoderBlock(embed_size, heads, forward_expansion, dropout, device)for _ in range(num_layers)])self.fc_out = nn.Linear(embed_size, trg_vocab_size)self.dropout = nn.Dropout(dropout)def forward(self, x, enc_out, src_mask, trg_mask):N, seq_length = x.shapepositions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))for layer in self.layers:x = layer(x, enc_out, enc_out, src_mask, trg_mask)out = self.fc_out(x)return outclass Transformer(nn.Module):def __init__(self,src_vocab_size, trg_vocab_size,src_pad_idx,trg_pad_idx,embed_size=256,num_layers=6,forward_expansion=4,heads=8,dropout=0,device="cuda",max_length=100):super(Transformer, self).__init__()self.encoder = Encoder(src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length)self.decoder = Decoder(trg_vocab_size,embed_size,num_layers,heads,forward_expansion,dropout,device,max_length)self.src_pad_idx = src_pad_idxself.trg_pad_idx = trg_pad_idxself.device = devicedef make_src_mask(self, src):src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)#(N, 1, 1, src_len)return src_mask.to(self.device)def make_trg_mask(self, trg):N, trg_len = trg.shapetrg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(N, 1, trg_len, trg_len)return trg_mask.to(self.device)def forward(self, src, trg):src_mask = self.make_src_mask(src)trg_mask = self.make_trg_mask(trg)enc_src = self.encoder(src, src_mask)out = self.decoder(trg, enc_src, src_mask,  trg_mask)return outif __name__ == "__main__":device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(device)trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)src_pad_idx = 0trg_pad_idx = 0src_vocab_size = 10trg_vocab_size = 10model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(device)out = model(x, trg[:, :-1])print(out.shape)

相关文章:

PyTorch从零开始实现Transformer

文章目录 自注意力Transformer块编码器解码器块解码器整个Transformer参考来源全部代码(可直接运行) 自注意力 计算公式 代码实现 class SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.e…...

运动蓝牙耳机什么牌子的好用、最好用的运动蓝牙耳机推荐

音乐是运动的灵魂,而一款优秀的运动耳机则是让音乐与我们的身体完美融合的关键。今天,我推荐五款备受运动爱好者喜爱的耳机,它们以卓越的音质、舒适的佩戴和出色的稳定性能脱颖而出,助你在运动中创造最佳状态。 1、NANK南卡Runne…...

HTTP、HTTPS协议详解

文章目录 HTTP是什么报文结构请求头部响应头部 工作原理用户点击一个URL链接后,浏览器和web服务器会执行什么http的版本持久连接和非持久连接无状态与有状态Cookie和Sessionhttp方法:get和post的区别 状态码 HTTPS是什么ssl如何搞到证书nginx中的部署 加…...

【算法与数据结构】222、LeetCode完全二叉树的节点个数

文章目录 一、题目二、一般遍历解法三、利用完全二叉树性质四、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、一般遍历解法 思路分析:利用层序遍历,然后用num记录节点数量。其他的例如…...

登录和注册表单的11个HTML最佳实践

原文:11 HTML best practices for login & sign-up forms 原作者:Andrey Sitnik 翻译已获原文作者许可,禁止转载和商用 大多数网站都有登录或注册表单;它们是业务转换的关键部分。然而,即使是流行的站点也没有实现本文中提到的…...

Mysql删除历史数据

Mysql定时删除历史数据 实现 1.创建存储过程&#xff08;函数&#xff09; SQL DROP PROCEDURE IF EXISTS KeepDatasWith30Days CREATE PROCEDURE KeepDatasWith30Days() BEGINSELECT maxId:max(Id) FROM tableName WHERE CreateTime<DATE(DATE_SUB(NOW(),INTERVAL 31 D…...

Python—数据结构(一)

先放一张自己学习和整理归纳的思维导图&#xff0c;以便让大家都知道我自己的整体学习路线。 数据结构的学习路上内容枯燥&#xff0c;但坚持下来一定有很大的收获&#xff01;加油&#x1f4aa;&#x1f3fb;&#xff01; 数据结构 数据的概念数据元素&#xff1a; 若干基本…...

离线环境安装flask依赖包

找到当前版本需要的所有依赖包&#xff0c;生产flask项目生成项目依赖包文件requirements.txt 1)在当前项目目录下 生成requirements文件&#xff1a;pip freeze >requirements.txt 执行requirements文件&#xff0c;安装依赖包&#xff1a;pip install -r requirements.t…...

ChatGPT与Claude对比分析

一 简介 1、ChatGPT: 访问地址&#xff1a;https://chat.openai.com/ 由OpenAI研发,2022年11月发布。基于 transformer 结构的大规模语言模型,包含1750亿参数。训练数据集主要是网页文本,聚焦于流畅的对话交互。对话风格友好,回复通顺灵活,富有创造性。存在一定的安全性问题,可…...

登录和注册页面 - 验证码功能的实现

目录 1. 生成验证码 2. 将本地验证码发布成 URL 3. 后端返回验证码的 URL 给前端 4. 前端将用户输入的验证码传给后端 5. 后端验证验证码 1. 生成验证码 使用hutool 工具生成验证码. 1.1 添加 hutool 验证码依赖 <!-- 验证码 --> <dependency><groupId…...

HDFS的文件块大小(重点)

HDFS 中的文件在物理上是分块存储 &#xff08;Block &#xff09; &#xff0c; 块的大小可以通过配置参数( dfs.blocksize&#xff09;来规定&#xff0c;默认大小在Hadoop2.x/3.x版本中是128M&#xff0c;1.x版本中是64M。 如果一个文件文件小于128M&#xff0c;该文件会占…...

深度学习(二)

目录 一、神经网络 整体架构: 架构细节: 神经元个数的影响: 神经网络过拟合解决: 卷积网络 整体架构: 卷积层 边缘填充 特征尺寸计算 池化层 特征图变化 递归神经网络 一、神经网络 整体架构: 图中分别为输入层、隐层1、隐层2、输出层 通过输入层输入某数值&#xf…...

无涯教程-jQuery - wrapInner( html )方法函数

wrapInner(html)方法使用HTML结构包装每个匹配元素(包括文本节点)的内部子内容。 wrapInner( html ) - 语法 selector.wrapInner( html ) 这是此方法使用的所有参数的描述- html - 将动态创建并环绕目标的HTML字符串。 wrapInner( html ) - 示例 以下是一个简单的示例…...

【unity之IMGUI实践】单例模式管理数据存储【二】

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…...

【C++】开源:Linux端ALSA音频处理库

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Linux端ALSA音频处理库。 无专精则不能成&#xff0c;无涉猎则不能通。。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c…...

【Linux | Shell】结构化命令2 - test命令、方括号测试条件、case命令

目录 一、概述二、test 命令2.1 test 命令2.2 方括号测试条件2.3 test 命令和测试条件可以判断的 3 类条件2.3.1 数值比较2.3.2 字符串比较 三、复合条件测试四、if-then 的高级特性五、case 命令 一、概述 上篇文章介绍了 if 语句相关知识。但 if 语句只能执行命令&#xff0c…...

基于单片机的语音识别智能垃圾桶垃圾分类的设计与实现

功能介绍 以51单片机作为主控系统&#xff1b;液晶显示当前信息和状态&#xff1b;通过语音识别模块对当前垃圾种类进行语音识别&#xff1b; 通过蜂鸣器进行声光报警提醒垃圾桶已满&#xff1b;采用舵机控制垃圾桶打开关闭&#xff1b;超声波检测当前垃圾桶满溢程度&#xff1…...

最新版本docker 设置国内镜像源 加速办法

解决问题:加速 docker 设置国内镜像源 目录: 国内加速地址 修改方法 国内加速地址 1.Docker中国区官方镜像 https://registry.docker-cn.com 2.网易 http://hub-mirror.c.163.com 3.ustc https://docker.mirrors.ustc.edu.cn 4.中国科技大学 https://docker.mirrors…...

深度学习——LSTM解决分类问题

RNN基本介绍 概述 循环神经网络&#xff08;Recurrent Neural Network&#xff0c;RNN&#xff09;是一种深度学习模型&#xff0c;主要用于处理序列数据&#xff0c;如文本、语音、时间序列等具有时序关系的数据。 核心思想 RNN的关键思想是引入了循环结构&#xff0c;允许…...

three.js入门二:相机的zoom参数

环境&#xff1a; threejs&#xff1a;129 &#xff08;在浏览器的控制台下输入&#xff1a; window.__THREE__即可查看版本&#xff09;vscodewindowedge 透视相机或正交相机都有一个zoom参数&#xff0c;它可以用来将相机排到的内容在canvas上缩放显示。 注意&#xff1a;…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...