当前位置: 首页 > news >正文

25、matlab里面的10中优化方法介绍——Opt_Golden法(matlab程序)

1.简述

      

基本思想
黄金分割法也称为 0.618 法,其基本思想是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短以逼近极小值点。适用于确定区间上的任何单谷函数求极小值的问题。

公式推导
设有定义在[ a , b ] [a,b][a,b]上的单谷函数
φ ( α ) = f ( x k + α d k ) \varphi \left( \alpha \right) =f\left( x_k+\alpha d_k \right)

在[ a , b ] [a,b][a,b]上取两个试探点。计算φ ( x 1 ) 
可能会出现以下两种情形:


我们要求试探点满足下列两个原则:

对称原则
λ = 新 区 间 长 度 原 区 间 长 度 = \lambda =\frac{新区间长度}{原区间长度}=λ= 
原区间长度
新区间长度

 =定值(保持缩减比)
从而可得
{ x 1 = a + ( 1 − λ ) ( b − a ) x 2 = a + λ ( b − a )

 

考虑情形1,此时新的搜索区间为[ a 1 , b 1 ] [a_1,b_1][a 
选取新的试探点x 
 

若令λ 2 = 1 − λ ( λ > 0 ) \lambda ^2=1-\lambda\left( \lambda>0 \right)λ 

则有
新的试探点x 4 x_4x 
1−λ得λ ≈ 0.618 \lambda \approx0.618λ≈0.618。

具体练习及Matlab实现
 

2.代码

主程序:

%%   用Opt_Golden()求解最优化
f1201 = inline('x-(x.*x-2).^3/2','x');
a = 0;
b = 4; 
TolX = 1e-4;%判断循环是否停止的x阈值
TolFun = 1e-4; %函数阈值
MaxIter = 100; %设定迭代次数
[xo,fo] = Opt_Golden(f1201,a,b,TolX,TolFun,MaxIter)

子程序:

function [xo,fo]=Opt_Golden(f,a,b,TolX,TolFun,k)
%%%%黄金搜索算法求在区间[a,b]上的最优化解
%f为目标函数,TolX为x阈值,TolFun为函数阈值,k为迭代次数
r =(sqrt(5)-1)/2; %r为黄金分割点值,
h = b-a;  %区间宽度
rh = r*h; 
%%%取两点c、d,并计算相应的函数值fc和fd
c = b-rh; 
d = a+rh;
fc = feval(f,c);
fd = feval(f,d);
%%%算法第二步判断是否停止迭代
if k <= 0 | (abs(h) < TolX & abs(fc - fd) < TolFun)
    if fc <= fd
        xo = c;
        fo = fc;
    else
        xo = d;
        fo = fd;
    end
    if k == 0
        fprintf('最好设定迭代次数大于0');
    end
%%%%算法第三步,进行新一轮迭代    
else
    if fc < fd
        [xo,fo] = Opt_Golden(f,a,d,TolX,TolFun,k-1);
    else
        [xo,fo] = Opt_Golden(f,c,b,TolX,TolFun,k-1);
    end
end

3.运行结果

 

 

相关文章:

25、matlab里面的10中优化方法介绍——Opt_Golden法(matlab程序)

1.简述 基本思想 黄金分割法也称为 0.618 法&#xff0c;其基本思想是通过取试探点和进行函数值比较&#xff0c;使包含极小点的搜索区间不断缩短以逼近极小值点。适用于确定区间上的任何单谷函数求极小值的问题。 公式推导 设有定义在[ a , b ] [a,b][a,b]上的单谷函数 φ ( …...

点云拟合球体

前言&#xff1a;在很多情况下&#xff0c;需要根据点云来拟合球体&#xff0c;本博文主要介绍各种方法的拟合情况及优缺点&#xff0c;希望对各位小伙伴有所帮助&#xff01; 目录 1. vtkFitImplicitFunction进行球拟合 2. 四点求解球 1. vtkFitImplicitFunction进行球拟合 …...

基于动态规划(DP)算法的增程式EV能量管理策略研究(MATLAB编程)

文章目录 算法代码仿真结果结果分析算法代码 clc; clear; close all; load CWTVC.mat N=length(T_z); %N=200;load minFuelConsup.txt minFuel_Pe=minFuelConsup(:...

前端知识点视频补充

使用工具&#xff1a; Vscode使用&#xff1a; 需要下载插件&#xff1a;open in browser。这个插件可以快速打开浏览器。 选择文件夹有两种方式&#xff1a;选择打开文件、拖拽方式&#xff08;这种最方便&#xff09; 快捷键&#xff1a;快速生成Htm结构文件&#xff1a;…...

python多线程—终止子线程

总体思路 1、获取需要终止的子线程id 2、根据子线程id&#xff0c;终止子线程。 过程 获取子线程id&#xff1a; import threading Thread_id threading.get_ident() # 获取子线程的id值线程终止函数 def async_raise(Thread_id, exctype):"""raises th…...

#P1012. [NOIP2015提高组] 神奇的幻方

题目描述 幻方是一种很神奇的 N \times NNN 矩阵&#xff1a;它由数字 1,2,3, \ldots ,N \times N1,2,3,…,NN 构成&#xff0c;且每行、每列及两条对角线上的数字之和都相同。 当 NN 为奇数时&#xff0c;我们可以通过以下方法构建一个幻方&#xff1a; 首先将 11 写在第一行…...

(学习笔记-IP)Ping的工作原理

Ping是基于ICMP协议工作的&#xff0c;ICMP报文封装在IP包里面&#xff0c;它工作在网络层&#xff0c;是IP协议的助手。 ICMP包头的类型字段&#xff0c;大致可分为两大类&#xff1a; 一类是用于诊断的查询消息&#xff0c;也就是查询报文类型一类是通知出错原因的错误消息&…...

php 进程间通信:管道、uds

1、管道 1.1、管道概念 管道是单向的、先进先出的&#xff0c;它把进程的输出和另一个进程的输入连接在一起。一个进程往管道写入数据&#xff0c;另一个进程从管道读取数据。数据被从管道中读取出来之后&#xff0c;将被删除&#xff0c;其他进程无法在读取到相应的数据。管…...

Stable Diffusion如何生成高质量的图-prompt写法介绍

文章目录 Stable Diffusion使用尝试下效果prompt的编写技巧prompt 和 negative promptPrompt格式Prompt规则细节优化Guidance Scale 总结 Stable Diffusion Stable Diffusion是一个开源的图像生成AI系统,由Anthropic公司开发。它基于 Transformer模型架构,可以通过文字描述生成…...

MySQL 高级SQL语句(一)

目录 一、高级SQL语句&#xff08;进阶查询&#xff09; 1.1 select 1.2 distinct 1.3 where 1.4 and 和 or 1.5 in 1.6 between 1.7 通配符 1.8 like 1.9 order by 一、高级SQL语句&#xff08;进阶查询&#xff09; 先准备2个表 一个location表&#xff1a; use m…...

SkyWalking链路追踪-技术文档首页

SkyWalking 文档中文版&#xff08;社区提供&#xff09; (skyapm.github.io)https://skyapm.github.io/document-cn-translation-of-skywalking/ SkyWalking-基本概念 SkyWalking链路追踪是一个用于分布式系统的性能监控工具&#xff0c;它帮助开发人员了解系统中各组件之间…...

AndroidStudio Memory profiler(内存分析器)

1.Record Java/Kotlin allocations 查看java 层中对象的调用栈和短时间内创建对象的次数。可用于内存抖动快速分析,可用快速查找到该对象的调用栈(等同于mat) 从上图可见&#xff0c;短时间内创建了23个char[] 数组&#xff0c;其中最大的char[] 占用20k, 查看cll stack 调用…...

【C++模板进阶】

目录 一、模板使用时的一个小注意点二、非类型模板参数三、类模板的特化3.1函数模板的特化3.2类模板的特化3.2.1全特化3.2.2偏特化 四、模板的分离编译4.1模板不支持分离编译4.2模板分离编译报错的分析4.2解决方案 五、模板的总结 一、模板使用时的一个小注意点 在使用模板时&…...

(一)RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理

Lison <dreamlison163.com>, v1.0.0, 2023.06.22 RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理 文章目录 RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理RabbitMQ概念RabbitMQ的优势RabbitMQ劣势RabbitMQ应用的场景RabbitMQ_AMQPRabbitMQ工作原理 RabbitM…...

JetBrains全家桶:如何自定义实现类TODO注释?

文章目录 效果图具体方法参考文献 效果图 TODO注释大家应该都用过&#xff0c;在注释开头打上TODO的话&#xff0c;软件下方的TODO选项卡里就可以自动筛选出你打了TODO的注释&#xff0c;你可以点击里面对应的注释来实现快速跳转。 jetbrains全家桶&#xff08;如Pycharm、Int…...

【技术干货】工业级BLE5.2蓝牙模块SKB378 使用教程,AT指令集

SKB378是一个高度集成的蓝牙5.2模组&#xff0c;可用来在2.4GHz ISM频段内做高速率、短距离无线通信。工业级标准&#xff0c;支持主从模式(1主对8从)&#xff0c;支持串口透传&#xff0c;AT指令控制&#xff0c;且支持AoA蓝牙高精度室内定位&#xff0c;模组内部集成32位ARM …...

零基础深度学习——学习笔记1 (逻辑回归)

前言 因为各种各样的原因要开始学习深度学习了&#xff0c;跟着吴恩达老师的深度学习视频&#xff0c;自己总结一些知识点&#xff0c;以及学习中遇到的一些问题&#xff0c;以便记录学习轨迹以及以后复习使用&#xff0c;为了便于自己理解&#xff0c;我会将一些知识点用以个…...

I want to know on what switchport is connected my computer (10.8.0.2)

i.e. I am connected to an L2. I want to know on what switchport is connected my computer (10.8.0.2) Well….obviously not on this switch. Let’s dig Now I have the MAC address of my computer, we confinue to dig Computer has been seen on interface g0/2. Let’…...

OpenCv之人脸操作

目录 一、马赛克实现 二、人脸马赛克 三、人脸检测 四、多张人脸检测 一、马赛克实现 案例代码如下: import cv2 import numpy as npimg cv2.imread(8.jpg) # 马赛克方式一:缩小图片 # img2 cv2.resize(img,(600,400)) # # 马赛克方式二: # img2 cv2.resize(img,(600,4…...

C++[第五章]--指针和引用

指针和引用 文章目录 指针和引用1、引用2、指针3、右值引用4、引用限定符const和引用限定符1、引用 引用就是别名,引用定义时必须初始化: int a; int &b=a; //b即为a的别名 如果不是形参,必须初始化,引用某一变量 2、指针 指针和c一样; this指针 在类的成员函数中使…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...