当前位置: 首页 > news >正文

【动态规划】简单多状态

文章目录

  • 动态规划(简单多状态)
    • 1. 按摩师
    • 2. 打家劫舍 ||
    • 3. 删除并获得点数
    • 4. 粉刷房子
    • 5. 最佳买卖股票时机含冷冻期
    • 6. 买卖股票的最佳时机含手续费
    • 7. 买卖股票的最佳时机 |||
    • 8. 买卖股票的最佳时机 IV

动态规划(简单多状态)

1. 按摩师

题目链接

  1. 状态表示

    dp[i]表示到i位置的时候预约的最大时长。但是这个题目我们可以选择接或不接。因此可以继续划分为两个子状态:

    • f[i]表示:到i位置时接受的最大时长
    • g[i]表示:到i位置时不接受的最大时长
  2. 状态转移方程

    2vu4cjw7da-1690362953455.png

  3. 初始化

    因为这个题目比较简单,所以不需要使用虚拟节点的方法,初始化是为了后面填表的时候不越界

    f[0] = nums[0], g[0] = 0

  4. 填表

    从左到右

  5. 返回值

    接受最后一个或者不接受的最大值

AC代码:

class Solution 
{
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;vector<int> f(n);auto g = f;f[0] = nums[0], g[0] = 0;for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

2. 打家劫舍 ||

题目链接

分析:

由于房间是连续的,也就是一个环,因此可以分类讨论:

  • 偷第一个时,第二个和最后一个不能偷
  • 不偷第一个,可以偷第二个和最后一个

因此只需要两种情况的最大值就可以

  1. 状态表示

    dp[i]表示偷到i时的最大金额,但是依然可以划分为两种情况偷或不偷

    f[i]表示偷i时的最大金额

    g[i]表示不偷i时的最大金额

  2. 状态转移方程

    qx81yjpg3g-1690364303443.png

  3. 初始化

    保证后续的填表不越界

  4. 填表

    从左到右,两个一起填

  5. 返回值

    最大值

AC代码:

class Solution 
{
public:int rob(vector<int>& nums) {int x = 0, y = 0;int n = nums.size();x += nums[0];x += recursion(2, n - 2, nums);y += recursion(1, n - 1, nums);return max(x, y);}int recursion(int left, int right, vector<int> &v){if (left > right) return 0;int n = v.size();vector<int> f(n);auto g = f;f[left] = v[left]; // 初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + v[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[right], g[right]);}
};

3. 删除并获得点数

题目链接

分析:我们把所有数字的点数之和,放到一个数组当中,在进行一次打家劫舍就可以了

把原数组转换成一个新数组,新数组的下标i所对应的值为原数组的元素i在原数组中数字的总和,比如原数组[2, 2, 3, 3, 3, 4],转换为新数组就是[0, 0, 4, 9, 4]。在新数组中,下标0和1表示在原数组中没有0和1这两个数,新数组下标2的值是4,表示在原数组中,所有2的总和是4。转换的目的就是可以从新数组中得到删除nums[i]而得到的点数,也就是可以打劫的金额。因为删除nums[i]后,还要删除nums[i] + 1nums[i] - 1,在新数组中就意味着不能取相邻的元素,不能取相邻的元素和打家劫舍也是一样的。接下来就可以使用打家劫舍的方式解答了

AC代码:

class Solution 
{
public:const int N = 10001;int deleteAndEarn(vector<int>& nums) {vector<int> arr(N);for (auto e : nums) arr[e] += e;vector<int> g(N);auto f = g;for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(g[i - 1], f[i - 1]);}return max(g[N - 1], f[N - 1]);}
};

4. 粉刷房子

题目链接

  1. 状态表示

    dp[i]表示到i时,所需的最少费用。但是到i的时候可以有三种情况我们需要分三个子状态

    dp[i][0], dp[i][1], dp[i][2]

  2. 状态转移方程

    wrmwgl7sbc-1690365960472.png

  3. 初始化

    采用虚拟节点的方式

  4. 填表

  5. 返回值

    返回三个表中的最小值

AC代码:

class Solution 
{
public:int minCost(vector<vector<int>>& costs) {// 0: 红色 1:蓝色 2:绿色int n = costs.size();vector<vector<int>> dp(n + 1, vector<int>(3));for (int i = 1; i <= n; i++){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2];}int ret = INT_MAX;for (int i = 0; i < 3; i++){ret = min(ret, dp[n][i]);}return ret;}
};

5. 最佳买卖股票时机含冷冻期

题目链接

  1. 状态表示

    dp[i]表示到i位置时的最大利润,但是到达i位置的时候仍然有3种子状态

    • dp[i][0],表示i过后处于买入状态
    • dp[i][1], 表示i过后处于可交易状态
    • dp[i][2],表示i过后处于冷冻期状态
  2. 状态转移方程

    像这种状态之间可以相互转换的,我们可以采用如下方法分析:

    bh40p1zbcb-1690367957450.png

  3. 初始化

    dp[0][0] = -prices[0], dp[0][1] = 0, dp[0][2] = 0

  4. 填表

    三张表同时填

  5. 返回值

    返回三中状态最后的最大值

AC代码:

class Solution 
{
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));dp[0][0] = -prices[0];for (int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}return max(max(dp[n - 1][0], dp[n - 1][1]), dp[n - 1][2]);}
};

6. 买卖股票的最佳时机含手续费

题目链接

  1. 状态表示

    dp[i]表示到i位置的时候,最大的利润但是到i位置的时候是有两种状态的

    dp[i][0]:表示是买入状态

    dp[i][1]表示卖出状态

  2. 状态转移方程

    ogyovzrz17-1690372796443.png

  3. 初始化

    刚开始如果是买入状态dp[0][0] = -prices[0]

  4. 填表

  5. 返回值

AC代码:

class Solution 
{
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2));dp[0][0] = -prices[0];for (int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return max(dp[n - 1][0], dp[n - 1][1]);}
};

7. 买卖股票的最佳时机 |||

题目链接

  1. 状态表示

    dp[i]表示到i位置的最大利润,但是还分为几个状态

    f[i][j]表示到i是第j次买入的最大利润

    g[i][j]表示到i是第j次买入的最大利润

  2. 状态转移方程

    zrwwmb104n-1690374918443.png

  3. 初始化

    f[0][0] = -prices[0], g[0][0] = 0

  4. 填表

    从上往下,每一行从左到右

  5. 返回值

    卖出状态最后的几个中的最大值

AC代码:

class Solution 
{
public:const int N = 0x3f3f3f3f;int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -N));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i < 3; i++){ret = max(ret, g[n - 1][i]);}return ret;}
};

8. 买卖股票的最佳时机 IV

题目链接

  1. 状态表示

    还是分为两个子状态

    f[i][j]表示到i位置买入状态第j次买股票的最大利润

    g[i][j]表示到i位置卖出状态第j次买股票的最大利润

  2. 状态转移方程

    image-20230726205442099

  3. 初始化

    f[0][0] = -prices[0], g[0][0] = 0

  4. 填表

    从上到下,从左到右

  5. 返回值

    返回所有行的最大值

AC代码:

class Solution {
public:const int N = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(k + 1, -N));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++){ret = max(ret, g[n - 1][i]);}return ret;}
};

相关文章:

【动态规划】简单多状态

文章目录 动态规划&#xff08;简单多状态&#xff09;1. 按摩师2. 打家劫舍 ||3. 删除并获得点数4. 粉刷房子5. 最佳买卖股票时机含冷冻期6. 买卖股票的最佳时机含手续费7. 买卖股票的最佳时机 |||8. 买卖股票的最佳时机 IV 动态规划&#xff08;简单多状态&#xff09; 1. 按…...

科技资讯|苹果计划本月推出Vision Pro头显开发套件,电池有重大更新

根据消息源 aaronp613 分享的信息&#xff0c;苹果计划本月底面向开发者&#xff0c;发布 Vision Pro 头显开发套件。消息源还指出苹果更新了 Vision Pro 头显电池组的代号&#xff0c;共有 A2781&#xff0c;A2988 和 A2697 三种不同的型号&#xff0c;目前尚不清楚三者之间的…...

k8s 将pod节点上的文件拷贝到本地

要将 Kubernetes&#xff08;k8s&#xff09;中 Pod 节点上的文件拷贝到本地&#xff0c;可以通过使用 kubectl cp 命令来实现。kubectl cp 命令允许你在本地系统和 Pod 之间复制文件和目录。 下面是使用 kubectl cp 命令的语法&#xff1a; kubectl cp <namespace>/&l…...

Git简介与工作原理:了解Git的基本概念、版本控制系统和分布式版本控制的工作原理

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…...

java篇 类的进阶0x02:方法重载

文章目录 方法重载 overload方法签名返回值不属于方法签名的原因&#xff1a; 重载的参数匹配规则 方法重载 overload 多个方法功能很相似&#xff0c;但不完全一样&#xff0c;可以考虑使用方法的重载。 同一个类中&#xff0c;方法可以重名&#xff0c;但是签名不可以重复。…...

Android11 相机拍照权限,以及解决resolveActivity返回null

一、配置拍照和读写权限 <uses-permission android:name"android.permission.CAMERA"/> <uses-feature android:name"android.hardware.camera" /><uses-permission android:name"android.permission.WRITE_EXTERNAL_STORAGE"/&…...

MAXENT模型的生物多样性教程

详情点击链接&#xff1a;基于MAXENT模型的生物多样性生境模拟与保护优先区甄选、自然保护区布局优化及未来气候变化下评估中的应用及论文写作 一&#xff1a;生物多样性保护格局与自然保护区格局优化 1.我国生物多样性格局与分布&#xff1b; 2.我国自然保护区格局与分布&…...

CISA学习笔记-第一章、信息系统审计过程

传统的审计三方关系理论指明&#xff0c;审计作为独立于会计记录之外的一项重要职能&#xff0c;是公司财务信息公允可靠的有力保障&#xff0c;制约着会计行为&#xff0c;制衡了会计权力。 1. IS审计和保障标准、指南、工具 职业道德规范 信息技术保证框架&#xff08;ITAF&a…...

回调函数的使用:案例一:c语言简单信号与槽机制。

系列文章目录 文章目录 系列文章目录前言一、回调函数1.1 回调函数基本概念1.2 简单实现 二、代码案例1.代码示例 总结 前言 了解回调函数的基本概念&#xff0c;函数指针的使用、简单信号与槽的实现机制&#xff1b; 一、回调函数 1.1 回调函数基本概念 回调函数就是一个通…...

python matplotlib库 设置字体字号等

主要是记录字体、字号对应的参数。注意字符串类型的参数要加引号 1.字体&#xff1a; fontname 常见参数&#xff1a; # 常用 Times New Roman、Dejavu sans、TeX Gyre Schola中文字体 黑体&#xff1a;SimHei 微软雅黑&#xff1a;Microsoft YaHei 微软正黑体&#xff1a;M…...

【MySQL】SQL性能分析 (七)

&#x1f697;MySQL学习第七站~ &#x1f6a9;本文已收录至专栏&#xff1a;MySQL通关路 ❤️文末附全文思维导图&#xff0c;感谢各位点赞收藏支持~ 假如我们需要对SQL进行优化&#xff0c;我们就必须对他足够的了解&#xff0c;比如 对哪一类SQL进行优化&#xff08;增删改查…...

超越想象的GPT医疗 20230723

7月份读完了这本书&#xff0c;趁着周末写下读书笔记吧 这本书 作者&#xff1a;【美】彼得.李 Peter Lee 【美】凯丽.戈德伯格CareyGoldberg 著 【美】伊萨克.科恩Isaac Kohane 芦义 译 在AI风起云涌时代&#xff0c;在这刚刚过去的新冠三年&#xff0c;“超越想象的GPT医…...

【N32L40X】学习笔记03-gpio输出库

gpio输出 该函数库的目的就是在统一的地方配置&#xff0c;将配置的不同项放置在一个结构体内部使用一个枚举来定义一个的别名 led.c #include <stdio.h> #include "led/bsp_led.h"static led_t leds[LED_NUM]{{GPIOB,GPIO_PIN_2,RCC_APB2_PERIPH_GPIOB},{GP…...

WebClient,HTTP Interface远程调用阿里云API

HTTP Interface Spring 允许我们通过定义接口的方式&#xff0c;给任意位置发送 http 请求&#xff0c;实现远程调用&#xff0c;可以用来简化 HTTP 远程访问。需要webflux场景才可 <dependency><groupId>org.springframework.boot</groupId><artifactId&…...

飞书ChatGPT机器人 – 打造智能问答助手实现无障碍交流

文章目录 前言环境列表1.飞书设置2.克隆feishu-chatgpt项目3.配置config.yaml文件4.运行feishu-chatgpt项目5.安装cpolar内网穿透6.固定公网地址7.机器人权限配置8.创建版本9.创建测试企业10. 机器人测试 前言 在飞书中创建chatGPT机器人并且对话&#xff0c;在下面操作步骤中…...

React、Vue框架如何实现组件更新,原理是什么?

引言 React 和 Vue 都是当今最流行的前端框架,它们都实现了组件化开发模式。为了优化性能,两者都采用了虚拟DOM技术。当组件状态发生改变时,它们会使用虚拟DOM进行局部渲染比对,只更新必要的DOM节点,从而避免重新渲染整个组件树。本文将从React和Vue的组件更新原理入手,剖析两…...

常见面试题之设计模式--策略模式

1. 概述 先看下面的图片&#xff0c;我们去旅游选择出行模式有很多种&#xff0c;可以骑自行车、可以坐汽车、可以坐火车、可以坐飞机。 作为一个程序猿&#xff0c;开发需要选择一款开发工具&#xff0c;当然可以进行代码开发的工具有很多&#xff0c;可以选择Idea进行开发&a…...

redis多key问题

多key问题指的是在Redis中存在大量的key&#xff0c;如果这些key过多&#xff0c;超过了Redis可以容纳的内存大小&#xff0c;那么数据会被保存在交换空间&#xff08;swap区&#xff09;&#xff0c;这会导致性能下降。 Redis是一种基于内存的缓存数据库&#xff0c;它的性能…...

kafka第三课-可视化工具、生产环境问题总结以及性能优化

一、可视化工具 https://pan.baidu.com/s/1qYifoa4 密码&#xff1a;el4o 下载解压之后&#xff0c;编辑该文件&#xff0c;修改zookeeper地址&#xff0c;也就是kafka注册的zookeeper的地址&#xff0c;如果是zookeeper集群&#xff0c;以逗号分开 vi conf/application.conf 启…...

2_Apollo4BlueLite中断控制器NVIC

1.概述 Apollo4BlueLite 的中断控制器是采用 ARM Cortex-M4 内核&#xff0c;并集成了 NVIC&#xff08;Nested Vectored Interrupt Controller&#xff0c;嵌套向量中断控制器&#xff09;作为其中断控制器。 NVIC 是 ARM Cortex-M 系列处理器中常用的中断控制器&#xff0c…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...