当前位置: 首页 > news >正文

使用克拉默法则进行三点定圆(二维)

目录

  • 1.二维圆
  • 2.python代码
  • 3.计算结果

在这里插入图片描述

本文由CSDN点云侠原创,爬虫网站请自重。

1.二维圆

  已知不共线的三个点,设其坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2) ( x 3 , y 3 ) (x_3,y_3) (x3,y3),圆的一般方程为:
A ( x 2 + y 2 ) + B x + C y + D = 0 (1) A(x^2+y^2)+Bx+Cy+D=0\tag{1} A(x2+y2)+Bx+Cy+D=0(1)
将式(1)变形可得圆的标准方程为:
( x + B 2 A ) 2 + ( y + C 2 A ) 2 = B 2 + C 2 − 4 A D 4 A 2 (2) (x+\frac{B}{2A})^2+(y+\frac{C}{2A})^2=\frac{B^2+C^2-4AD}{4A^2}\tag{2} (x+2AB)2+(y+2AC)2=4A2B2+C24AD(2)
将三个已知点代入式(1),可得关于 A , B , C , D A,B,C,D A,B,C,D的齐次线性方程组:

[ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ] ⋅ [ A B C D ] = [ 0 0 0 0 ] (3) \left[ \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right]\cdot \left[ \begin{matrix} A\\ B \\ C \\ D \\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0 \\ 0 \\ 0 \\ \end{matrix} \right]\tag{3} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 ABCD = 0000 (3)
在三点不共线的前提下,该齐次线性方程组有非零解,其等价于系数矩阵不满秩,即有:

∣ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ∣ = 0 (4) \left| \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right|=0\tag{4} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 =0(4)
将式(4)展开,并与式(1)对比可得四个系数:
A = + ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ (5) A=+\left| \begin{matrix} x_1 & y_1&1 \\ x_2 & y_2&1 \\ x_3 & y_3&1 \\ \end{matrix} \right|\tag{5} A=+ x1x2x3y1y2y3111 (5)

B = − ∣ x 1 2 + y 1 2 y 1 1 x 2 2 + y 2 2 y 2 1 x 3 2 + y 3 2 y 3 1 ∣ (6) B=-\left| \begin{matrix} x_1^2+y_1^2& y_1&1 \\ x_2^2+y_2^2 & y_2&1 \\ x_3^2+y_3^2 & y_3&1 \\ \end{matrix} \right|\tag{6} B= x12+y12x22+y22x32+y32y1y2y3111 (6)

C = + ∣ x 1 2 + y 1 2 x 1 1 x 2 2 + y 2 2 x 2 1 x 3 2 + y 3 2 x 3 1 ∣ (7) C=+\left| \begin{matrix} x_1^2+y_1^2 & x_1 &1 \\ x_2^2+y_2^2 & x_2 &1 \\ x_3^2+y_3^2 & x_3 &1 \\ \end{matrix} \right|\tag{7} C=+ x12+y12x22+y22x32+y32x1x2x3111 (7)

D = − ∣ x 1 2 + y 1 2 x 1 y 1 x 2 2 + y 2 2 x 2 y 2 x 3 2 + y 3 2 x 3 y 3 ∣ (8) D=-\left| \begin{matrix} x_1^2+y_1^2 & x_1 & y_1 \\ x_2^2+y_2^2 & x_2 & y_2 \\ x_3^2+y_3^2 & x_3 & y_3 \\ \end{matrix} \right|\tag{8} D= x12+y12x22+y22x32+y32x1x2x3y1y2y3 (8)
由式(2)可得圆心坐标 ( x c , y c ) (x_c,y_c) (xc,yc)和半径 r r r,即
{ x c = − B 2 A y c = − C 2 A r = B 2 + C 2 − 4 A D 4 A 2 (9) \begin{cases} x_c=-\frac{B}{2A}\\ y_c=-\frac{C}{2A}\\ r=\sqrt\frac{B^2+C^2-4AD}{4A^2} \end{cases} \tag{9} xc=2AByc=2ACr=4A2B2+C24AD (9)

2.python代码

import numpy as npdef three_points_fit_circle(points):P1 = points[0]P2 = points[1]P3 = points[2]# 共线检查temp01 = P1 - P2temp02 = P3 - P2temp03 = np.cross(temp01, temp02)temp = (temp03 @ temp03) / (temp01 @ temp01) / (temp02 @ temp02)if temp < 10 ** -6:print('\t三点共线, 无法确定圆')return NoneA = np.ones((3, 3))A[0, 0] = P1[0]A[0, 1] = P1[1]A[1, 0] = P2[0]A[1, 1] = P2[1]A[2, 0] = P3[0]A[2, 1] = P3[1]B = np.ones((3, 3))B[0, 0] = P1[0] ** 2 + P1[1] ** 2B[0, 1] = P1[1]B[1, 0] = P2[0] ** 2 + P2[1] ** 2B[1, 1] = P2[1]B[2, 0] = P2[0] ** 2 + P2[1] ** 2B[2, 1] = P3[1]C = np.ones((3, 3))C[0, 0] = P1[0] ** 2 + P1[1] ** 2C[0, 1] = P1[0]C[1, 0] = P2[0] ** 2 + P2[1] ** 2C[1, 1] = P2[0]C[2, 0] = P2[0] ** 2 + P2[1] ** 2C[2, 1] = P3[0]D = np.ones((3, 3))D[0, 0] = P1[0] ** 2 + P1[1] ** 2D[0, 1] = P1[0]D[0, 2] = P1[1]D[1, 0] = P2[0] ** 2 + P2[1] ** 2D[1, 1] = P2[0]D[1, 2] = P2[1]D[2, 0] = P2[0] ** 2 + P2[1] ** 2D[2, 1] = P3[0]D[2, 2] = P3[1]A = +np.linalg.det(A)B = -np.linalg.det(B)C = +np.linalg.det(C)D = -np.linalg.det(D)Xc = -B / (2 * A)Yc = -C / (2 * A)r = np.sqrt((B * B + C * C - 4 * A * D) / (4 * A * A))return Xc, Yc, r

3.计算结果

圆心x坐标:14.558850728542366
圆心y坐标:11.80858513779518
圆半径:22.163390629231692

在这里插入图片描述

相关文章:

使用克拉默法则进行三点定圆(二维)

目录 1.二维圆2.python代码3.计算结果 本文由CSDN点云侠原创&#xff0c;爬虫网站请自重。 1.二维圆 已知不共线的三个点&#xff0c;设其坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1​,y1​)、 ( x 2 , y 2 ) (x_2,y_2) (x2​,y2​)、 ( x 3 , y 3 ) (x_3,y_3) (x3​,y3​)&#xf…...

【Java】Java多线程编程基础

文章目录 1. 进程与线程1.1 进程与线程的基本认识1.1.1 进程&#xff08;Process&#xff09;1.1.2 线程&#xff08;Thread&#xff09; 1.2 为什么会有线程1.2.1 以看视频为例 2. 多线程实现2.1 Thread类实现多线程2.2 Runnable接口实现多线程2.3 Callable接口实现多线程2.3 …...

FFmpeg-4.2.4的去logo源码分析

1.源码 libavfilter/vf_delogo.c 2.源码分析 /** 去logo算法, 函数的参数解释如下: w: 输入图像的宽度 h: 输入图像的高度 logo_x: 标志区域左上角的x坐标 logo_y: 标志区域左上角的y坐标 logo_w: 标志的宽度 logo_h: 标志的高度 band: 处理区域周围的带宽大小 show: 是否在…...

深度学习(一)

目录 一、特征工程的作用 二、深度学习的应用 三、得分函数 四、损失函数 五、前向传播 六、反向传播 一、特征工程的作用 数据特征决定了模型的上限预处理和特征提取是最核心的算法与参数选择决定了如何逼近这个上限 二、深度学习的应用 无人驾驶人脸识别分辨率重构 深…...

Stream API将对象中的某一字段取出转换为list或数组

List<DevicePartMaintain> devicePartMaintainList devicePartMaintainMapper.selectDevicePartMaintainByMitId(mitId);所有id转换为List 要使用Stream流获取devicePartMaintainList中所有的id&#xff0c;您可以使用stream()方法将列表转换为流&#xff0c;然后使用…...

什么是Java中的JVM(Java虚拟机)?

JVM&#xff08;Java虚拟机&#xff09;是Java平台的核心组件之一&#xff0c;是一个用于执行Java字节码的虚拟计算机。Java源代码经过编译器编译&#xff0c;生成字节码文件&#xff08;.class文件&#xff09;&#xff0c;然后由JVM来解释和执行这些字节码。JVM负责将字节码翻…...

springboot + redis + 注解 + 拦截器 实现接口幂等性校验

一、概念 幂等是一个数学与计算机学概念&#xff0c;在数学中某一元运算为幂等时&#xff0c;其作用在任一元素两次后会和其作用一次的结果相同。在计算机中编程中&#xff0c;一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。 幂等函数或幂等方法是…...

PLC编程:关键在于模拟操作流程和实现控制

PLC编程的核心是通过程序描述流程&#xff0c;完成控制过程。因此&#xff0c;掌握PLC编程语言和基本功能实现是必要的。 PLC语言主要分为梯形图、语句和功能图。梯形图适合基本逻辑描述&#xff0c;语句表用于数据处理&#xff0c;相对较难理解。步进式功能图的状态函数描述很…...

List的各种排序

目录 Collections.sort对list进行排序 对象中某个属性进行排序 通过比较器进行比较 JAVA8特性Stream流进行排序 Stream升降序组合使用 Collections.sort对list进行排序 public static void main(String[] args) {List<Integer> list new ArrayList<>();list…...

在自定义数据集上微调Alpaca和LLaMA

本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA&#xff0c;我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程&#xff0c;本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers和hugs Face)进行评估。此外还将介绍如何使用grado应用程序部署和…...

Python 实现接口类的两种方式+邮件提醒+动态导入模块+反射(参考Django中间件源码)

实现抽象类的两种方式 方式一 from abc import ABCMeta from abc import abstractmethodclass BaseMessage(metaclassABCMeta):abstractmethoddef send(self,subject,body,to,name):pass 方式二 class BaseMessage(object):def send(self, subject, body, to, name):raise …...

Solr原理剖析

一、简介 Solr是一个高性能、基于Lucene的全文检索服务器。Solr对Lucene进行了扩展&#xff0c;提供了比Lucene更为丰富的查询语言&#xff0c;并实现了强大的全文检索功能、高亮显示、动态集群&#xff0c;具有高度的可扩展性。同时从Solr 4.0版本开始&#xff0c;支持SolrCl…...

解决 “无法将 ‘npm‘ 项识别为 cmdlet、函数、脚本文件或可运行程序的名称“ 错误的方法

系列文章目录 文章目录 系列文章目录前言一、错误原因&#xff1a;二、解决方法&#xff1a;三、注意事项&#xff1a;总结 前言 在使用 npm 进行前端项目开发时&#xff0c;有时会遇到错误信息 “无法将 ‘npm’ 项识别为 cmdlet、函数、脚本文件或可运行程序的名称”&#x…...

Python 电商API 开发最佳实践

一、简介 当你打卡了一家北京最具有地中海特色的餐厅&#xff0c;当我们在餐厅点餐时&#xff0c;服务员会给我们一份菜单&#xff0c;菜单上列出了所有可供选择的菜品和饮料。我们可以在菜单上选择我们想要的食物和饮料&#xff0c;然后告诉服务员我们的选择。服务员会根据我…...

JAVA基础-集合(List与Map)

目录 引言 一&#xff0c;Collection集合 1.1,List接口 1.1.1&#xff0c;ArrayList 1.1.1.1&#xff0c;ArrayList的add&#xff08;&#xff09;添加方法 1.1.1.2&#xff0c;ArrayList的remove&#xff08;&#xff09;删除方法 1.1.1.3&#xff0c;ArrayList的contai…...

19 QListWidget控件

Tips: 对于列表式数据可以使用QStringList进行左移一块输入。 代码&#xff1a; //listWidget使用 // QListWidgetItem * item new QListWidgetItem("锄禾日当午"); // QListWidgetItem * item2 new QListWidgetItem("汗滴禾下土"); // ui->…...

手动安装docsify

安装docsify详见&#xff1a;docsify 1、下载 wget https://codeload.github.com/docsifyjs/docsify/zip/refs/heads/master -o docsify-master.zip 2、解压 unzip docsify-master.zip 3、移动文件到nginx的html所在目录【略】 4、配置nginx&#xff0c;示例如下 locati…...

yaml语法详解

#kv #对空格的严格要求十分高 #注入到我们的配置类中 #普通的keyvalue name: qinjiang#对象 student:name: qingjiangage: 3#行内写法 student1: {name: qinjiang,age: 3}#数组 pets:- cat- dog- pigpet: [cat,dog,pig]yaml可以给实体类赋值 person:name: kuangshenage: 19happ…...

ubuntu下tmux安装

目录 0. 前言1. Tmux介绍2. 安装3. 验证安装 0. 前言 本节安装tmux终端复用工具&#xff0c;在Ubuntu中运行一些服务或脚本的时候往往不能退出终端&#xff0c;需要一直挂着。在有图形界面的linux中你还可以新开一个终端去做别的事&#xff0c;但是在无界面linux中&#xff0c…...

ssh打开远程vscode

如果想要远程打开其他终端的vscode&#xff0c;首先要知道远程终端的ip地址和用户名称以及用户密码 1、打开本地vscode 2、点击左下角蓝色区域 3、页面上部出现如下图&#xff0c;点击ssh&#xff0c;我这里已经连接&#xff0c;所以是connect to host 4、选择Add New SSH Host…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...