使用克拉默法则进行三点定圆(二维)
目录
- 1.二维圆
- 2.python代码
- 3.计算结果
本文由CSDN点云侠原创,爬虫网站请自重。
1.二维圆
已知不共线的三个点,设其坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)、 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)、 ( x 3 , y 3 ) (x_3,y_3) (x3,y3),圆的一般方程为:
A ( x 2 + y 2 ) + B x + C y + D = 0 (1) A(x^2+y^2)+Bx+Cy+D=0\tag{1} A(x2+y2)+Bx+Cy+D=0(1)
将式(1)变形可得圆的标准方程为:
( x + B 2 A ) 2 + ( y + C 2 A ) 2 = B 2 + C 2 − 4 A D 4 A 2 (2) (x+\frac{B}{2A})^2+(y+\frac{C}{2A})^2=\frac{B^2+C^2-4AD}{4A^2}\tag{2} (x+2AB)2+(y+2AC)2=4A2B2+C2−4AD(2)
将三个已知点代入式(1),可得关于 A , B , C , D A,B,C,D A,B,C,D的齐次线性方程组:
[ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ] ⋅ [ A B C D ] = [ 0 0 0 0 ] (3) \left[ \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right]\cdot \left[ \begin{matrix} A\\ B \\ C \\ D \\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0 \\ 0 \\ 0 \\ \end{matrix} \right]\tag{3} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 ⋅ ABCD = 0000 (3)
在三点不共线的前提下,该齐次线性方程组有非零解,其等价于系数矩阵不满秩,即有:
∣ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ∣ = 0 (4) \left| \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right|=0\tag{4} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 =0(4)
将式(4)展开,并与式(1)对比可得四个系数:
A = + ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ (5) A=+\left| \begin{matrix} x_1 & y_1&1 \\ x_2 & y_2&1 \\ x_3 & y_3&1 \\ \end{matrix} \right|\tag{5} A=+ x1x2x3y1y2y3111 (5)
B = − ∣ x 1 2 + y 1 2 y 1 1 x 2 2 + y 2 2 y 2 1 x 3 2 + y 3 2 y 3 1 ∣ (6) B=-\left| \begin{matrix} x_1^2+y_1^2& y_1&1 \\ x_2^2+y_2^2 & y_2&1 \\ x_3^2+y_3^2 & y_3&1 \\ \end{matrix} \right|\tag{6} B=− x12+y12x22+y22x32+y32y1y2y3111 (6)
C = + ∣ x 1 2 + y 1 2 x 1 1 x 2 2 + y 2 2 x 2 1 x 3 2 + y 3 2 x 3 1 ∣ (7) C=+\left| \begin{matrix} x_1^2+y_1^2 & x_1 &1 \\ x_2^2+y_2^2 & x_2 &1 \\ x_3^2+y_3^2 & x_3 &1 \\ \end{matrix} \right|\tag{7} C=+ x12+y12x22+y22x32+y32x1x2x3111 (7)
D = − ∣ x 1 2 + y 1 2 x 1 y 1 x 2 2 + y 2 2 x 2 y 2 x 3 2 + y 3 2 x 3 y 3 ∣ (8) D=-\left| \begin{matrix} x_1^2+y_1^2 & x_1 & y_1 \\ x_2^2+y_2^2 & x_2 & y_2 \\ x_3^2+y_3^2 & x_3 & y_3 \\ \end{matrix} \right|\tag{8} D=− x12+y12x22+y22x32+y32x1x2x3y1y2y3 (8)
由式(2)可得圆心坐标 ( x c , y c ) (x_c,y_c) (xc,yc)和半径 r r r,即
{ x c = − B 2 A y c = − C 2 A r = B 2 + C 2 − 4 A D 4 A 2 (9) \begin{cases} x_c=-\frac{B}{2A}\\ y_c=-\frac{C}{2A}\\ r=\sqrt\frac{B^2+C^2-4AD}{4A^2} \end{cases} \tag{9} ⎩ ⎨ ⎧xc=−2AByc=−2ACr=4A2B2+C2−4AD(9)
2.python代码
import numpy as npdef three_points_fit_circle(points):P1 = points[0]P2 = points[1]P3 = points[2]# 共线检查temp01 = P1 - P2temp02 = P3 - P2temp03 = np.cross(temp01, temp02)temp = (temp03 @ temp03) / (temp01 @ temp01) / (temp02 @ temp02)if temp < 10 ** -6:print('\t三点共线, 无法确定圆')return NoneA = np.ones((3, 3))A[0, 0] = P1[0]A[0, 1] = P1[1]A[1, 0] = P2[0]A[1, 1] = P2[1]A[2, 0] = P3[0]A[2, 1] = P3[1]B = np.ones((3, 3))B[0, 0] = P1[0] ** 2 + P1[1] ** 2B[0, 1] = P1[1]B[1, 0] = P2[0] ** 2 + P2[1] ** 2B[1, 1] = P2[1]B[2, 0] = P2[0] ** 2 + P2[1] ** 2B[2, 1] = P3[1]C = np.ones((3, 3))C[0, 0] = P1[0] ** 2 + P1[1] ** 2C[0, 1] = P1[0]C[1, 0] = P2[0] ** 2 + P2[1] ** 2C[1, 1] = P2[0]C[2, 0] = P2[0] ** 2 + P2[1] ** 2C[2, 1] = P3[0]D = np.ones((3, 3))D[0, 0] = P1[0] ** 2 + P1[1] ** 2D[0, 1] = P1[0]D[0, 2] = P1[1]D[1, 0] = P2[0] ** 2 + P2[1] ** 2D[1, 1] = P2[0]D[1, 2] = P2[1]D[2, 0] = P2[0] ** 2 + P2[1] ** 2D[2, 1] = P3[0]D[2, 2] = P3[1]A = +np.linalg.det(A)B = -np.linalg.det(B)C = +np.linalg.det(C)D = -np.linalg.det(D)Xc = -B / (2 * A)Yc = -C / (2 * A)r = np.sqrt((B * B + C * C - 4 * A * D) / (4 * A * A))return Xc, Yc, r
3.计算结果
圆心x坐标:14.558850728542366
圆心y坐标:11.80858513779518
圆半径:22.163390629231692
相关文章:

使用克拉默法则进行三点定圆(二维)
目录 1.二维圆2.python代码3.计算结果 本文由CSDN点云侠原创,爬虫网站请自重。 1.二维圆 已知不共线的三个点,设其坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)、 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)、 ( x 3 , y 3 ) (x_3,y_3) (x3,y3)…...

【Java】Java多线程编程基础
文章目录 1. 进程与线程1.1 进程与线程的基本认识1.1.1 进程(Process)1.1.2 线程(Thread) 1.2 为什么会有线程1.2.1 以看视频为例 2. 多线程实现2.1 Thread类实现多线程2.2 Runnable接口实现多线程2.3 Callable接口实现多线程2.3 …...
FFmpeg-4.2.4的去logo源码分析
1.源码 libavfilter/vf_delogo.c 2.源码分析 /** 去logo算法, 函数的参数解释如下: w: 输入图像的宽度 h: 输入图像的高度 logo_x: 标志区域左上角的x坐标 logo_y: 标志区域左上角的y坐标 logo_w: 标志的宽度 logo_h: 标志的高度 band: 处理区域周围的带宽大小 show: 是否在…...

深度学习(一)
目录 一、特征工程的作用 二、深度学习的应用 三、得分函数 四、损失函数 五、前向传播 六、反向传播 一、特征工程的作用 数据特征决定了模型的上限预处理和特征提取是最核心的算法与参数选择决定了如何逼近这个上限 二、深度学习的应用 无人驾驶人脸识别分辨率重构 深…...

Stream API将对象中的某一字段取出转换为list或数组
List<DevicePartMaintain> devicePartMaintainList devicePartMaintainMapper.selectDevicePartMaintainByMitId(mitId);所有id转换为List 要使用Stream流获取devicePartMaintainList中所有的id,您可以使用stream()方法将列表转换为流,然后使用…...

什么是Java中的JVM(Java虚拟机)?
JVM(Java虚拟机)是Java平台的核心组件之一,是一个用于执行Java字节码的虚拟计算机。Java源代码经过编译器编译,生成字节码文件(.class文件),然后由JVM来解释和执行这些字节码。JVM负责将字节码翻…...

springboot + redis + 注解 + 拦截器 实现接口幂等性校验
一、概念 幂等是一个数学与计算机学概念,在数学中某一元运算为幂等时,其作用在任一元素两次后会和其作用一次的结果相同。在计算机中编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。 幂等函数或幂等方法是…...

PLC编程:关键在于模拟操作流程和实现控制
PLC编程的核心是通过程序描述流程,完成控制过程。因此,掌握PLC编程语言和基本功能实现是必要的。 PLC语言主要分为梯形图、语句和功能图。梯形图适合基本逻辑描述,语句表用于数据处理,相对较难理解。步进式功能图的状态函数描述很…...

List的各种排序
目录 Collections.sort对list进行排序 对象中某个属性进行排序 通过比较器进行比较 JAVA8特性Stream流进行排序 Stream升降序组合使用 Collections.sort对list进行排序 public static void main(String[] args) {List<Integer> list new ArrayList<>();list…...

在自定义数据集上微调Alpaca和LLaMA
本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers和hugs Face)进行评估。此外还将介绍如何使用grado应用程序部署和…...
Python 实现接口类的两种方式+邮件提醒+动态导入模块+反射(参考Django中间件源码)
实现抽象类的两种方式 方式一 from abc import ABCMeta from abc import abstractmethodclass BaseMessage(metaclassABCMeta):abstractmethoddef send(self,subject,body,to,name):pass 方式二 class BaseMessage(object):def send(self, subject, body, to, name):raise …...

Solr原理剖析
一、简介 Solr是一个高性能、基于Lucene的全文检索服务器。Solr对Lucene进行了扩展,提供了比Lucene更为丰富的查询语言,并实现了强大的全文检索功能、高亮显示、动态集群,具有高度的可扩展性。同时从Solr 4.0版本开始,支持SolrCl…...
解决 “无法将 ‘npm‘ 项识别为 cmdlet、函数、脚本文件或可运行程序的名称“ 错误的方法
系列文章目录 文章目录 系列文章目录前言一、错误原因:二、解决方法:三、注意事项:总结 前言 在使用 npm 进行前端项目开发时,有时会遇到错误信息 “无法将 ‘npm’ 项识别为 cmdlet、函数、脚本文件或可运行程序的名称”&#x…...
Python 电商API 开发最佳实践
一、简介 当你打卡了一家北京最具有地中海特色的餐厅,当我们在餐厅点餐时,服务员会给我们一份菜单,菜单上列出了所有可供选择的菜品和饮料。我们可以在菜单上选择我们想要的食物和饮料,然后告诉服务员我们的选择。服务员会根据我…...

JAVA基础-集合(List与Map)
目录 引言 一,Collection集合 1.1,List接口 1.1.1,ArrayList 1.1.1.1,ArrayList的add()添加方法 1.1.1.2,ArrayList的remove()删除方法 1.1.1.3,ArrayList的contai…...

19 QListWidget控件
Tips: 对于列表式数据可以使用QStringList进行左移一块输入。 代码: //listWidget使用 // QListWidgetItem * item new QListWidgetItem("锄禾日当午"); // QListWidgetItem * item2 new QListWidgetItem("汗滴禾下土"); // ui->…...
手动安装docsify
安装docsify详见:docsify 1、下载 wget https://codeload.github.com/docsifyjs/docsify/zip/refs/heads/master -o docsify-master.zip 2、解压 unzip docsify-master.zip 3、移动文件到nginx的html所在目录【略】 4、配置nginx,示例如下 locati…...

yaml语法详解
#kv #对空格的严格要求十分高 #注入到我们的配置类中 #普通的keyvalue name: qinjiang#对象 student:name: qingjiangage: 3#行内写法 student1: {name: qinjiang,age: 3}#数组 pets:- cat- dog- pigpet: [cat,dog,pig]yaml可以给实体类赋值 person:name: kuangshenage: 19happ…...

ubuntu下tmux安装
目录 0. 前言1. Tmux介绍2. 安装3. 验证安装 0. 前言 本节安装tmux终端复用工具,在Ubuntu中运行一些服务或脚本的时候往往不能退出终端,需要一直挂着。在有图形界面的linux中你还可以新开一个终端去做别的事,但是在无界面linux中,…...

ssh打开远程vscode
如果想要远程打开其他终端的vscode,首先要知道远程终端的ip地址和用户名称以及用户密码 1、打开本地vscode 2、点击左下角蓝色区域 3、页面上部出现如下图,点击ssh,我这里已经连接,所以是connect to host 4、选择Add New SSH Host…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...