当前位置: 首页 > news >正文

OpenCV 4.0+Python机器学习与计算机视觉实战

  • 💂 个人网站:【办公神器】【游戏大全】【神级源码资源网】
  • 🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】
  • 💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】

在这里插入图片描述

目录

    • 前言
    • 第一部分:安装OpenCV 4.0及相关依赖
    • 第二部分:图像处理基础
    • 第三部分:图像特征提取与描述
    • 第四部分:目标检测与识别
    • 第五部分:图像分类与机器学习
    • 总结
    • 好书推荐

前言

OpenCV是一款广泛应用于计算机视觉和图像处理领域的开源库。本文将引导读者通过Python使用OpenCV 4.0以上版本,实现一系列机器学习与计算机视觉的应用,包括图像处理、特征提取、目标检测、机器学习等内容。最终,我们将通过一个实战项目构建一个简单的人脸识别系统。


第一部分:安装OpenCV 4.0及相关依赖

要开始本次实战,首先需要安装OpenCV 4.0和其他必要的Python库。推荐使用虚拟环境来避免与其他项目产生冲突。以下是安装步骤:

  1. 安装虚拟环境(可选)
pip install virtualenv
  1. 创建虚拟环境(例如,命名为cv_env)
virtualenv cv_env
  1. 激活虚拟环境
  • Windows:
cv_env\Scripts\activate
  • macOS/Linux:
source cv_env/bin/activate
  1. 安装OpenCV 4.0和其他依赖库
pip install opencv-python
pip install numpy
pip install matplotlib

第二部分:图像处理基础

在本节中,我们将学习如何使用OpenCV处理图像,包括图像的读取、显示和保存。同时,我们还将了解一些基本的图像处理技术。

  1. 图像读取与显示
import cv2# 读取图像
image = cv2.imread("image.jpg")# 显示图像
cv2.imshow("Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 图像保存
# 修改图像并保存
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray_image.jpg", gray_image)
  1. 图像调整与滤波
# 图像调整
resized_image = cv2.resize(image, (new_width, new_height))# 图像滤波
blurred_image = cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
  1. 图像边缘检测
# 边缘检测
edges = cv2.Canny(image, threshold1, threshold2)

第三部分:图像特征提取与描述

在这一部分,我们将学习如何使用OpenCV提取图像的关键点和特征描述符,并进行特征匹配。

  1. 特征提取与描述
import cv2# 创建ORB特征检测器
orb = cv2.ORB_create()# 在图像中寻找关键点并计算特征描述符
keypoints, descriptors = orb.detectAndCompute(image, None)# 绘制关键点
output_image = cv2.drawKeypoints(image, keypoints, None, (0, 255, 0), flags=0)# 显示结果
cv2.imshow("Features", output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 特征匹配
import cv2# 读取两张图像
image1 = cv2.imread("image1.jpg")
image2 = cv2.imread("image2.jpg")# 创建ORB特征检测器
orb = cv2.ORB_create()# 在两张图像中寻找关键点并计算特征描述符
keypoints1, descriptors1 = orb.detectAndCompute(image1, None)
keypoints2, descriptors2 = orb.detectAndCompute(image2, None)# 创建BFMatcher对象
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)# 特征匹配
matches = bf.match(descriptors1, descriptors2)# 根据特征匹配结果绘制匹配点
output_image = cv2.drawMatches(image1, keypoints1, image2, keypoints2, matches, None, flags=2)# 显示结果
cv2.imshow("Matching Features", output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

第四部分:目标检测与识别

在这一部分,我们将介绍目标检测与识别的基本原理和方法。我们将学习如何使用Haar级联分类器和基于深度学习的方法来检测和识别图像中的目标。

  1. Haar级联分类器目标检测
import cv2# 加载Haar级联分类器
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")# 加载图像并转换为灰度图像
image = cv2.imread("image.jpg")
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 使用分类器进行人脸检测
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))# 在图像上绘制检测到的人脸框
for (x, y, w, h) in faces:cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)# 显示结果
cv2.imshow("Face Detection", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 基于深度学习的目标检测(使用预训练模型,如YOLO或SSD) 在此处展示具体代码会比较冗长,因为涉及模型加载和推理过程。可以使用OpenCV的dnn模块来加载预训练模型并进行目标检测。

第五部分:图像分类与机器学习

在这一部分,我们将探索图像分类的机器学习方法。我们将介绍图像分类的常用算法,并使用OpenCV结合机器学习模型对图像进行分类。

  1. 图像分类的机器学习方法
  • 支持向量机(SVM)分类器
  • K近邻(KNN)分类器
  • 决策树分类器
  1. 使用SVM进行图像分类
import cv2
import numpy as np# 准备训练数据和标签
train_data = np.array([...])  # 特征向量组成的训练数据
labels = np.array([...])  # 对应训练数据的标签# 创建SVM分类器
svm = cv2.ml.SVM_create()# 训练SVM分类器
svm.train(train_data, cv2.ml.ROW_SAMPLE, labels)# 准备测试数据
test_data = np.array([...])  # 特征向量组成的测试数据# 进行分类预测
_, result = svm.predict(test_data)# 输出预测结果
print("Predicted label:", result)

总结

通过本文的学习,我们掌握了使用OpenCV 4.0及Python进行机器学习与计算机视觉的基础知识。我们学习了图像处理基础、图像特征提取与描述、目标检测与识别、图像分类与机器学习,并最终完成了一个实战项目:人脸识别系统。通过不断练习和探索,我们可以在计算机视觉和机器学习领域取得更多的成就。希望读者在未来的学习和工作中能够运用这些知识,开发更加智能和创新的应用。

好书推荐

《OpenCV 4.0+Python机器学习与计算机视觉实战》

在这里插入图片描述

内容简介

《OpenCV 4.0+Python机器学习与计算机视觉实战》详细阐述了机器学习与计算机视觉相关的基本解决方案,主要包括滤镜、深度传感器和手势识别、通过特征匹配和透视变换查找对象、使用运动恢复结构重建3D场景、在OpenCV中使用计算摄影、跟踪视觉上的显著对象、识别交通标志、识别面部表情、对象分类和定位、检测和跟踪对象等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。 本书适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。

📚 京东自营购买链接:《OpenCV 4.0+Python机器学习与计算机视觉实战》

在这里插入图片描述

http://itoday.top/

相关文章:

OpenCV 4.0+Python机器学习与计算机视觉实战

💂 个人网站:【办公神器】【游戏大全】【神级源码资源网】🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】 目录 前言第一部分&…...

自学网络安全(黑客)全笔记

一、什么是网络安全 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面…...

WAF/Web应用安全(拦截恶意非法请求)

Web 应用防火墙(Web Application Firewall, WAF)通过对 HTTP(S) 请求进行检测,识别并阻断 SQL 注入、跨站脚本攻击、跨站请求伪造等攻击,保护 Web 服务安全稳定。 Web 安全是所有互联网应用必须具备的功能&#xff0c…...

Windows环境下git客户端中的git-bash和MinGW64

我们在 Windows10 操作系统下,安装了 git 客户端之后,可以通过 git-bash.exe 打开一个 shell: 执行一些 linux 系统里的命令: 注意到上图紫色的 MINGW64. Mingw-w64 是原始 mingw.org 项目的改进版,旨在支持 Window…...

欧姆龙CX系列PLC串口转以太网欧姆龙cp1hplc以太网连接电脑

你是否还在为工厂设备信息采集困难而烦恼?捷米特JM-ETH-CX转以太网通讯处理器为你解决这个问题! 捷米特JM-ETH-CX转以太网通讯处理器专门为满足工厂设备信息化需求而设计,可以用于欧姆龙多个系列PLC的太网数据采集,非常方便构建生…...

Vue3笔记

1. Vue2 选项式 API vs Vue3 组合式API <script> export default { data(){ return { count:0 } }, methods:{ addCount(){ this.count } } } </script> <script setup> import { ref } from vue const count ref(0) c…...

git相关

gerrit用户指南&#xff1a; 资料&#xff1a;Gerrit 用户指南 gerrit-user-guide 上述有介绍如何review&#xff0c;review并非修改代码之后如何重新提交等操作 jenkins介绍 Jenkins详细教程 - 知乎 一、jenkins是什么&#xff1f; Jenkins是一个开源的、提供友好操作界…...

车道线检测|利用边缘检测的原理对车道线图片进行识别

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 这两个都是博主在学习Linux操作系统过程中的记录&#xff0c;希望对大家的学习有帮助&#xff01; 操作系统Operating Syshttps://blog.csdn.net/yu_cblog/category_12165502.html?spm1001.2014.3001.5482Linux S…...

C++—static关键字详解

引言&#xff1a; C的static有两种用法&#xff1a;面向过程程序设计中的static和面向对象程序设计中的static。前者应用于普通变量和函数&#xff0c;不涉及类&#xff1b;后者主要说明static在类中的作用。 一.面向过程中的static 1.静态全局变量 静态全局变量有以下特点…...

CS144学习笔记(1):Internet and IP

1.网络应用 网络应用可以在世界范围内交换数据&#xff0c;例如你可以通过浏览器读取出版社服务器提供的文章。网络应用的基本模型&#xff1a;两台主机各自在本地运行一个程序&#xff0c;程序通过网络来通信。 最常用的通信模型使用双向可靠字节流&#xff0c;通信的两台主机…...

2 Linux基础篇-Linux入门

2Linux基础篇-Linux入门 文章目录 2Linux基础篇-Linux入门2.1 Linux介绍2.2 Linux和Unix的关系 学习视频来自于B站 【小白入门 通俗易懂】2021韩顺平 一周学会Linux。 2.1 Linux介绍 常见的操作系统有 Windows、MacOS、Android、ios、Linux、Unix等。而其中&#xff0c;Linux是…...

分享200+个关于AI的网站

分享200个关于AI的网站 欢迎大家访问&#xff1a;https://tools.haiyong.site/ai 快速导航 AI 应用AI 写作AI 编程AI 设计AI 作图AI 训练模型AI 影音编辑AI 效率助手 AI 应用 文心一言: https://yiyan.baidu.com/ 百度出品的人工智能语言模型 ChatGPT: https://chat.openai.c…...

静态 链接

1、空间与地址的分配 现在的链接器空间分配的策略基本上都采用 “相似段合并” 的方式。通过将所有相同类型的 section 合并到一起&#xff0c;例如将所有输入目标文件的 .text 合并&#xff08;按顺序合并&#xff09;到输出文件的 .text 节中&#xff1b;然后&#xff0c;链接…...

【C#性能】C# 语言中的数组迭代

一、说明 可迭代性&#xff0c;是数组等操作的根本&#xff1b;在C程序开发过程中&#xff0c;可迭代操作是非常普遍、非常广泛的&#xff0c;然而&#xff0c;对这种操作知道多少&#xff0c;又不知道多少&#xff0c;都将影响开发灵活性、开发的进度。因此&#xff0c;本文干…...

全志F1C200S嵌入式驱动开发(解决spi加载过慢的问题)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 之前的几个章节当中,我们陆续解决了spi-nor驱动的问题、uboot支持spi-nor的问题。按道理来说,下面要做的应该就是用uboot的loady命令把kernel、dtb、rootfs这些文件下载到ddr,然…...

信息系统项目管理师(第四版)教材精读思维导图-第三章信息系统治理

请参阅我的另一篇文章&#xff0c;综合介绍软考高项&#xff1a; 信息系统项目管理师&#xff08;软考高项&#xff09;备考总结_计算机技术与软件专业技术_铭记北宸的博客-CSDN博客 目录 3.1 IT治理 3.2 IT审计 3.1 IT治理 3.2 IT审计...

区间预测 | MATLAB实现基于QRF随机森林分位数回归多变量时间序列区间预测模型

区间预测 | MATLAB实现基于QRF随机森林分位数回归多变量时间序列区间预测模型 目录 区间预测 | MATLAB实现基于QRF随机森林分位数回归多变量时间序列区间预测模型效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于QRF随机森林分位数回归多变量时间序列区间…...

五步快速搭建个性化外卖小程序商城

随着人们生活节奏的加快&#xff0c;外卖行业蓬勃发展。为了满足用户的需求&#xff0c;许多企业开始使用小程序商城来提供外卖服务。那么&#xff0c;如何制作一个功能完善、用户友好的外卖小程序商城呢&#xff1f;下面就来为大家详细介绍一下制作的步骤。 首先&#xff0c;我…...

jenkins中配置了发送邮件,构建后却没有发邮件Not sent to the following valid addresse

【问题描述】&#xff1a;jekins中配置了发送邮件&#xff0c;构建后却没有发邮件的问题&#xff0c;构建报错&#xff1a;Not sent to the following valid addresse 【报错显示】&#xff1a; 【问题定位】&#xff1a;Extended E-mail Notification中&#xff0c;没有配置…...

装箱问题(背包问题)

题目描述 有一个箱子容量为v(正整数&#xff0c;o≤v≤20000)&#xff0c;同时有n个物品(o≤n≤30)&#xff0c;每个物品有一个体积 (正整数)。要求从 n 个物品中&#xff0c;任取若干个装入箱内&#xff0c;使箱子的剩余空间为最小。 输入格式 第一行&#xff0c;一个整…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...