Langchain 的 LLMChain
Langchain 的 LLMChain
- 1. 开始使用
- 运行 LLM 链的其他方式
- 解析输出
- 从字符串初始化
LLMChain 是一个简单的链,它围绕语言模型添加了一些功能。它在整个LangChain中广泛使用,包括在其他链和代理中。
LLMChain 由 PromptTemplate 和语言模型(LLM 或聊天模型)组成。它使用提供的输入键值(以及内存键值,如果可用)格式化提示模板,将格式化的字符串传递给 LLM 并返回 LLM 输出。
1. 开始使用
示例代码,
import os
import openaifrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY']
os.environ['OPENAI_API_BASE'] = os.environ['OPENAI_API_BASE']
openai.api_key = os.environ['OPENAI_API_KEY']
openai.api_base = os.environ['OPENAI_API_BASE']import warnings
warnings.filterwarnings('ignore')
from langchain import PromptTemplate, OpenAI, LLMChainprompt_template = "对于一家生产{产品}的公司来说,取一个什么中文名字好?只需回复一个答案。"llm = OpenAI(temperature=0)
llm_chain = LLMChain(llm=llm,prompt=PromptTemplate.from_template(prompt_template)
)
llm_chain("彩色袜子")
输出结果,
{'产品': '彩色袜子', 'text': '\n\n彩趣袜业'}
运行 LLM 链的其他方式
除了所有 Chain 对象共享的 call 和 run 方法之外, LLMChain 还提供了几种调用链逻辑的方法:
apply 允许您针对输入列表运行链:
示例代码,
input_list = [{"产品": "袜子"},{"产品": "计算机"},{"产品": "鞋"}
]llm_chain.apply(input_list)
输出结果,
[{'text': '\n\n袜袜家'}, {'text': '\n\n计算之星'}, {'text': '\n\n鞋之家'}]
generate 与 apply 类似,只是它返回 LLMResult 而不是字符串。 LLMResult 通常包含有用的生成,例如令牌用法和完成原因。
llm_chain.generate(input_list)
输出结果,
LLMResult(generations=[[Generation(text='\n\n袜袜家', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\n计算之星', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\n鞋之家', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'prompt_tokens': 198, 'total_tokens': 227, 'completion_tokens': 29}, 'model_name': 'text-davinci-003'}, run=[RunInfo(run_id=UUID('4c04d0ca-c183-4723-a1ad-8949ec0a67c9')), RunInfo(run_id=UUID('c581efac-f58d-447d-a7d7-df84088987db')), RunInfo(run_id=UUID('932ab858-8eda-494d-91b4-8f75dbfa1096'))])
predict 与 run 方法类似,只不过输入键被指定为关键字参数而不是 Python 字典。
# 单个输入示例
llm_chain.predict(产品="彩色袜子")
输出结果,
'\n\n彩趣袜业'
# 多个输入示例template = """告诉我一个关于{主题}的{形容词}笑话。"""
prompt = PromptTemplate(template=template, input_variables=["形容词", "主题"])
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))llm_chain.predict(形容词="悲伤", 主题="鸭子")
输出结果,
'\n\n一只鸭子在湖边游泳,突然发现自己被困在了一个漩涡里,它拼命地挣扎,但是没有用,它只能眼睁睁地看着自己被淹死。这时,一只鹅飞过来,看到了这一幕,它对鸭子说:“别担心,我会帮你!”于是,鹅用它的嘴巴把鸭子吸出了漩涡,鸭子很感激'
解析输出
默认情况下,即使底层 prompt 对象具有输出解析器, LLMChain 也不解析输出。如果您想在 LLM 输出上应用该输出解析器,请使用 predict_and_parse 而不是 predict 和 apply_and_parse 而不是 apply 。
对于 predict :
from langchain.output_parsers import CommaSeparatedListOutputParseroutput_parser = CommaSeparatedListOutputParser()
template = """列出彩虹中的所有颜色"""
prompt = PromptTemplate(template=template, input_variables=[], output_parser=output_parser)
llm_chain = LLMChain(prompt=prompt, llm=llm)llm_chain.predict()
输出结果,
'\n\n红色、橙色、黄色、绿色、青色、蓝色、紫色'
对于 predict_and_parser :
llm_chain.predict_and_parse()
输出结果,
['红色、橙色、黄色、绿色、青色、蓝色、紫色']
# 英文的输出结果
# ['Red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']
从字符串初始化
您还可以直接从字符串模板构造LLMChain。
template = """告诉我一个关于{主题}的{形容词}笑话。"""
llm_chain = LLMChain.from_string(llm=llm, template=template)
llm_chain.predict(形容词="悲伤", 主题="鸭子")
输出结果,
'\n\n一只鸭子在湖边游泳,突然发现自己被困在了一个漩涡里,它拼命地挣扎,但是没有用,它只能眼睁睁地看着自己被淹死。这时,一只鹅飞过来,看到了这一幕,它对鸭子说:“别担心,我会帮你!”于是,鹅用它的嘴巴把鸭子吸出了漩涡,鸭子很感激'
完结!
相关文章:
Langchain 的 LLMChain
Langchain 的 LLMChain 1. 开始使用运行 LLM 链的其他方式解析输出从字符串初始化 LLMChain 是一个简单的链,它围绕语言模型添加了一些功能。它在整个LangChain中广泛使用,包括在其他链和代理中。 LLMChain 由 PromptTemplate 和语言模型(LL…...
100天精通Golang(基础入门篇)——第17天:深入解析Go语言中的指针
🌷 博主 libin9iOak带您 Go to Golang Language.✨ 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《I…...
第七章:WILDCAT: 弱监督学习的深度卷积神经网络用于图像分类、点位定位和分割
0.摘要 本文介绍了WILDCAT,一种深度学习方法,它旨在通过对齐图像区域来获得空间不变性和学习强烈局部化特征。我们的模型仅使用全局图像标签进行训练,并致力于三个主要的视觉识别任务:图像分类、弱监督的逐点对象定位和语义分割。…...
Axios-post请求下载文件
场景背景 1.一般来说,都是使用get请求后台接口,如此后台返回文件流于浏览器,则可直接下载。 2.那么除一般情况,就有特殊情况,比如你的请求接口参数特别长,此时便不可使用get请求,get请求的参数…...
视频增强技术-对比度增强
在图像处理中,由于获取的图像质量不好,需要通过对比度增强来提升图片质量,主要解决的是由于图像灰度级范围较小造成的对比度较低的问题,作用是使图像的灰度级范围放大,从而让图像更加清晰。主要对比度增强方法包括线性…...
uni-app点击按钮弹出提示框(以弹窗的形式显示),选择确定和取消
学习目标: 学习目标如下所示: uni-app点击提交按钮后弹出提示框,(以弹窗的形式显示),提示用户是否确认提交(即确定和取消),点击确定后调用真正的提交方法,将数据传给后端…...
linux部署es+kibana
部署kibana与es 3.4.1、拷贝文件 首先把elasticsearch-7.3.1-linux-x86_64.tar.gz 和kibana-7.3.1-linux-x86_64.tar.gz拷贝到linux上,比如我是拷贝/usr/local 目录下 3.4.2、解压文件 然后分别执行tar -zxvf elasticsearch-7.3.1-linux-x86_64.tar.gz和tar -zx…...
二十三种设计模式第十七篇--迭代子模式
迭代子模式是一种行为型设计模式,它允许你按照特定方式访问一个集合对象的元素,而又不暴露该对象的内部结构。迭代子模式提供了一种统一的方式来遍历容器中的元素,而不需要关心容器的底层实现。 该模式包含以下几个关键角色: 迭…...
《零基础入门学习Python》第056讲:论一只爬虫的自我修养4:网络爬图
今天我们结合前面学习的知识,进行一个实例,从网络上下载图片,话说我们平时闲来无事会上煎蛋网看看新鲜事,那么,熟悉煎蛋网的朋友一定知道,这里有一个 随手拍 的栏目,我们今天就来写一个爬虫&…...
23.7.26总结(博客项目)
接下来要完成: 从主页面点击进入时,通过作者id从数据库查找作者的nickname点击文章收藏(需要有收藏列表)首页还要加最新发布,点赞收藏最多作者名得改成文章作者(通过user_id从user表中拿数据)消…...
安全第一天
1. 编码 1.1 ASCLL编码 ASCII 是基于拉丁字母的一套电脑编码系统,主要用于显示现代英语和其他西欧语言。它是最通用的信息交换标准,并等同于国际标准ISO/IEC 646。 1.2 URL编码 URL:(统一资源定位器、定位地址,俗称网页…...
SpringCloud学习路线(12)——分布式搜索ElasticSeach数据聚合、自动补全、数据同步
一、数据聚合 聚合(aggregations): 实现对文档数据的统计、分析、运算。 (一)聚合的常见种类 桶(Bucket)聚合: 用来做文档分组。 TermAggregation: 按照文档字段值分组…...
cloudstack的PlugNicCommand的作用
PlugNicCommand是CloudStack中的一个命令,用于将一个网络接口卡(NIC)插入到虚拟机实例中。它的作用是将一个已存在的NIC连接到指定的虚拟机,以扩展虚拟机的网络功能。 具体来说,PlugNicCommand可以完成以下几个步骤&a…...
LT9211C 是一款MIPI/RGB/2PORT LVDS互转的芯片
LT9211C 1.描述: Lontium LT9211C是一个高性能转换器,可以在MIPI DSI/CSI-2/双端口LVDS和TTL之间相互转换,除了24位TTL到24位TTL,并且不推荐同步和DE的2端口10位LVDS和24位TTL之间的转换。LT9211C反序列化输入的MIPI/LVDS/TTL视…...
【Rust 基础篇】Rust 通道(Channel)
导言 在 Rust 中,通道(Channel)是一种用于在多个线程之间传递数据的并发原语。通道提供了一种安全且高效的方式,允许线程之间进行通信和同步。本篇博客将详细介绍 Rust 中通道的使用方法,包含代码示例和对定义的详细解…...
学习 C语言第二天 :C语言数据类型和变量(下)
目录: 1.变量的介绍以及存储 2.算术操作符、赋值操作符、单目操作符 3.scanf和printf的介绍 1.变量的介绍以及存储 1.1.变量的创建 了解了什么是类型了,类型是用来创建变量的。 变量是什么呢?在C语言当中不经常变的量称为常量,经常…...
【Kubernetes资源篇】ingress-nginx最佳实践详解
文章目录 一、Ingress Controller理论知识1、Ingress Controller、Ingress简介2、四层代理与七层代理的区别3、Ingress Controller中封装Nginx,为什么不直接用Nginx呢?4、Ingress Controller代理K8S内部Pod流程 二、实践:部署Ingress Control…...
Java基础阶段学习哪些知识内容?
Java是一种面向对象的编程语言,刚接触Java的人可能会感觉比较抽象,不要着急可以先从概念知识入手,先了解Java,再吃透Java,本节先来了解下Java的基础语法知识。 对象:对象是类的一个实例,有状态…...
【HISI IC萌新虚拟项目】ppu整体uvm验证环境搭建
关于整个虚拟项目,请参考: 【HISI IC萌新虚拟项目】Package Process Unit项目全流程目录_尼德兰的喵的博客-CSDN博客 前言 本篇文章完成ppu整体uvm环境搭建的指导,在进行整体环境搭建之前,请确认spt_utils、cpu_utils和ral_model均已经生成。此外,如果参考现在的工程目录…...
图像处理之hough圆形检测
hough检测原理 点击图像处理之Hough变换检测直线查看 下面直接描述检测圆形的方法 基于Hough变换的圆形检测方法 对于一个半径为 r r r,圆心为 ( a , b ) (a,b) (a,b)的圆,我们将…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
