当前位置: 首页 > news >正文

图像处理之hough圆形检测

hough检测原理

点击图像处理之Hough变换检测直线查看
下面直接描述检测圆形的方法

基于Hough变换的圆形检测方法

对于一个半径为 r r r,圆心为 ( a , b ) (a,b) a,b的圆,我们将其表示为:
( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (xa)2+(yb)2=r2
此时 x = [ x , y ] T , a = [ a , b , r ] T x=[x,y]^T,a=[a,b,r]^T x=[x,y]Ta=[a,b,r]T,其参数空间为三维。显然,图像空间上的一点 ( x , y ) (x,y) x,y,在参数空间中对应着一个圆锥,如下图所示。
在这里插入图片描述
而图像空间的一个圆就对应着这一簇圆锥相交的一个点,这个特定点在参数空间的三维参数一定,就表示一定半径一定圆心坐标的图像空间的那个圆。
上述方法是经典的Hough圆检测方法的原理,它具有精度高,抗干扰能力强等优点,但由于该方法的参数空间为三维,要在三维空间上进行证据累计的话,需要的时间和空间都是庞大的,在实际应用中不适用。为加快Hough变换检测圆的速度,学者们进行了大量研究,也出现了很多改进的Hough变换检测圆的方法。如利用图像梯度信息的Hough变换,对圆的标准方程对x求导得到下式:
2 ( x − a ) + 2 ( y − b ) d y d x = 0 2(x-a)+2(y-b)\frac{dy}{dx}=0 2(xa)+2(yb)dxdy=0
从上式看出,此时的参数空间从半径 r r r,圆心 ( a , b ) (a,b) a,b三维,变成了只有圆心 ( a , b ) (a,b) a,b的二维空间,利用这种方法检测圆其计算量明显减少了。
但这种改进的Hough变换检测圆的方法其检测精度并不高,原因在于,此种方法利用了边界斜率。
从本质上讲,边界斜率其实是用曲线在某一点的弦的斜率来代替的,这种情况下,要保证不存在误差,只有在弦长为零的情况。但在数字图像中,曲线的表现形式是离散的,其在某一点处的斜率指的是此点右向n步斜率或是左向n步斜率。如果弦长过小了,斜率的量化误差就会增大。这种方法比较适用于干扰较少的完整圆形目标。
在这里插入图片描述

主要代码:

def AHTforCircles(edge,center_threhold_factor = None,score_threhold = None,min_center_dist = None,minRad = None,maxRad = None,center_axis_scale = None,radius_scale = None,halfWindow = None,max_circle_num = None):if center_threhold_factor == None:center_threhold_factor = 10.0if score_threhold == None:score_threhold = 15.0if min_center_dist == None:min_center_dist = 80.0if minRad == None:minRad = 0.0if maxRad == None:maxRad = 1e7*1.0if center_axis_scale == None:center_axis_scale = 1.0if radius_scale == None:radius_scale = 1.0if halfWindow == None:halfWindow = 2if max_circle_num == None:max_circle_num = 6min_center_dist_square = min_center_dist**2sobel_kernel_y = np.array([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]])sobel_kernel_x = np.array([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])edge_x = convolve(sobel_kernel_x,edge,[1,1,1,1],[1,1])edge_y = convolve(sobel_kernel_y,edge,[1,1,1,1],[1,1])center_accumulator = np.zeros((int(np.ceil(center_axis_scale*edge.shape[0])),int(np.ceil(center_axis_scale*edge.shape[1]))))k = np.array([[r for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])])l = np.array([[c for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])])minRad_square = minRad**2maxRad_square = maxRad**2points = [[],[]]edge_x_pad = np.pad(edge_x,((1,1),(1,1)),'constant')edge_y_pad = np.pad(edge_y,((1,1),(1,1)),'constant')Gaussian_filter_3 = 1.0 / 16 * np.array([(1.0, 2.0, 1.0), (2.0, 4.0, 2.0), (1.0, 2.0, 1.0)])for i in range(edge.shape[0]):for j in range(edge.shape[1]):if not edge[i,j] == 0:dx_neibor = edge_x_pad[i:i+3,j:j+3]dy_neibor = edge_y_pad[i:i+3,j:j+3]dx = (dx_neibor*Gaussian_filter_3).sum()dy = (dy_neibor*Gaussian_filter_3).sum()if not (dx == 0 and dy == 0):t1 = (k/center_axis_scale-i)t2 = (l/center_axis_scale-j)t3 = t1**2 + t2**2temp = (t3 > minRad_square)&(t3 < maxRad_square)&(np.abs(dx*t1-dy*t2) < 1e-4)center_accumulator[temp] += 1points[0].append(i)points[1].append(j)M = center_accumulator.mean()for i in range(center_accumulator.shape[0]):for j in range(center_accumulator.shape[1]):neibor = \center_accumulator[max(0, i - halfWindow + 1):min(i + halfWindow, center_accumulator.shape[0]),max(0, j - halfWindow + 1):min(j + halfWindow, center_accumulator.shape[1])]if not (center_accumulator[i,j] >= neibor).all():center_accumulator[i,j] = 0# 非极大值抑制plt.imshow(center_accumulator,cmap='gray')plt.axis('off')plt.show()center_threshold = M * center_threhold_factorpossible_centers = np.array(np.where(center_accumulator > center_threshold))  # 阈值化sort_centers = []for i in range(possible_centers.shape[1]):sort_centers.append([])sort_centers[-1].append(possible_centers[0,i])sort_centers[-1].append(possible_centers[1,i])sort_centers[-1].append(center_accumulator[sort_centers[-1][0],sort_centers[-1][1]])sort_centers.sort(key=lambda x:x[2],reverse=True)centers = [[],[],[]]points = np.array(points)for i in range(len(sort_centers)):radius_accumulator = np.zeros((int(np.ceil(radius_scale * min(maxRad, np.sqrt(edge.shape[0] ** 2 + edge.shape[1] ** 2)) + 1))),dtype=np.float32)if not len(centers[0]) < max_circle_num:breakiscenter = Truefor j in range(len(centers[0])):d1 = sort_centers[i][0]/center_axis_scale - centers[0][j]d2 = sort_centers[i][1]/center_axis_scale - centers[1][j]if d1**2 + d2**2 < min_center_dist_square:iscenter = Falsebreakif not iscenter:continuetemp = np.sqrt((points[0,:] - sort_centers[i][0] / center_axis_scale) ** 2 + (points[1,:] - sort_centers[i][1] / center_axis_scale) ** 2)temp2 = (temp > minRad) & (temp < maxRad)temp = (np.round(radius_scale * temp)).astype(np.int32)for j in range(temp.shape[0]):if temp2[j]:radius_accumulator[temp[j]] += 1for j in range(radius_accumulator.shape[0]):if j == 0 or j == 1:continueif not radius_accumulator[j] == 0:radius_accumulator[j] = radius_accumulator[j]*radius_scale/np.log(j) #radius_accumulator[j]*radius_scale/jscore_i = radius_accumulator.argmax(axis=-1)if radius_accumulator[score_i] < score_threhold:iscenter = Falseif iscenter:centers[0].append(sort_centers[i][0]/center_axis_scale)centers[1].append(sort_centers[i][1]/center_axis_scale)centers[2].append(score_i/radius_scale)centers = np.array(centers)centers = centers.astype(np.float64)return centers

代码效果:
在这里插入图片描述
在这里插入图片描述

全部代码可见本人GitHub仓库,如果代码有用,please click star and watching
hough检测之前需要canny算子检测基础的边缘,点击这里可以查看有关canny算法相关内容

如果本文对你有帮助,关注加点赞!!!!!

相关文章:

图像处理之hough圆形检测

hough检测原理 点击图像处理之Hough变换检测直线查看 下面直接描述检测圆形的方法 基于Hough变换的圆形检测方法 对于一个半径为 r r r&#xff0c;圆心为 &#xff08; a , b &#xff09; &#xff08;a,b&#xff09; &#xff08;a,b&#xff09;的圆&#xff0c;我们将…...

el-upload文件上传(只能上传一个文件且再次上传替换上一个文件) vue3+vite+ts

组件&#xff1a; <template><el-upload class"upload-demo" v-model:file-list"fileList" ref"uploadDemo" action"/public-api/api/file" multiple:on-preview"handlePreview" :on-remove"handleRemove&quo…...

随手笔记——根据点对来估计相机的运动综述

随手笔记——根据点对来估计相机的运动综述 说明计算相机运动 说明 简单介绍3种情况根据点对来估计相机运动所使用的方法 计算相机运动 有了匹配好的点对&#xff0c;接下来&#xff0c;要根据点对来估计相机的运动。这里由于相机的原理不同分为&#xff1a; 当相机为单目时…...

ip校园广播音柱特点

ip校园广播音柱特点IP校园广播音柱是一种基于IP网络技术的音频播放设备&#xff0c;广泛应用于校园、商业区、公共场所等地方。它可以通过网络将音频信号传输到不同的音柱设备&#xff0c;实现远程控制和集中管理。IP校园广播音柱具备以下特点和功能&#xff1a;1. 网络传输&am…...

用 Node.js 手写 WebSocket 协议

目录 引言 从 http 到 websocekt 的切换 Sec-WebSocket-Key 与 Sec-WebSocket-Accept 全新的二进制协议 自己实现一个 websocket 服务器 按照协议格式解析收到的Buffer 取出opcode 取出MASK与payload长度 根据mask key读取数据 根据类型处理数据 frame 帧 数据的发…...

Xilinx AXI VIP使用教程

AXI接口虽然经常使用&#xff0c;很多同学可能并不清楚Vivado里面也集成了AXI的Verification IP&#xff0c;可以当做AXI的master、pass through和slave&#xff0c;本次内容我们看下AXI VIP当作master时如何使用。 新建Vivado工程&#xff0c;并新建block design&#xff0c;命…...

mysql主主架构搭建,删库恢复

mysql主主架构搭建&#xff0c;删库恢复 搭建mysql主主架构环境信息安装msql服务mysql1mysql2设置mysql2同步mysql1设置mysql1同步mysql2授权测试用账户 安装配置keepalivedmysql1检查脚本mysql2检查脚本 备份策略mysqldump全量备份mysqldump增量备份数据库目录全量备份 删除my…...

pythonweek1

引言 做任何事情都要脚踏实地&#xff0c;虽然大一上已经学习了python的基础语法&#xff0c;大一下也学习了C加加中的类与对象&#xff0c;但是自我觉得基础还不太扎实&#xff0c;又害怕有什么遗漏&#xff0c;所以就花时间重新学习了python的基础&#xff0c;学习Python的基…...

进程虚拟地址空间区域划分

目录 图示 详解 代码段 备注&#xff1a;x86 32位linux环境下&#xff0c;进程虚拟地址空间区域划分 图示 详解 用户空间 用于存储用户进程代码和数据&#xff0c;只能由用户进程访问 内核空间 用于存储操作系统内核代码和数据&#xff0c;只能由操作系统内核访问 text t…...

OpenAI Code Interpreter 的开源实现:GPT Code UI

本篇文章聊聊 OpenAI Code Interpreter 的一众开源实现方案中&#xff0c;获得较多支持者&#xff0c;但暂时还比较早期的项目&#xff1a;GPT Code UI。 写在前面 这篇文章本该更早的时候发布&#xff0c;但是 LLaMA2 发布后实在心痒难忍&#xff0c;于是就拖了一阵。结合 L…...

macOS Ventura 13.5 (22G74) 正式版发布,ISO、IPSW、PKG 下载

macOS Ventura 13.5 (22G74) 正式版发布&#xff0c;ISO、IPSW、PKG 下载 本站下载的 macOS Ventura 软件包&#xff0c;既可以拖拽到 Applications&#xff08;应用程序&#xff09;下直接安装&#xff0c;也可以制作启动 U 盘安装&#xff0c;或者在虚拟机中启动安装。另外也…...

Electron 主进程和渲染进程传值及窗口间传值

1 渲染进程调用主进程得方法 下面是渲染进程得代码: let { ipcRenderer} require( electron ); ipcRenderer.send( xxx ); //渲染进程中调用 下面是主进程得代码: var { ipcMain } require( electron ); ipcMain.on("xxx",function () { } )...

C#设计模式之---建造者模式

建造者模式&#xff08;Builder Pattern&#xff09; 建造者模式&#xff08;Builder Pattern&#xff09;是将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。建造者模式使得建造代码与表示代码的分离&#xff0c;可以使客户端不必知道…...

output delay 约束

output delay 约束 一、output delay约束概述二、output delay约束系统同步三、output delay约束源同步 一、output delay约束概述 特别注意&#xff1a;在源同步接口中&#xff0c;定义接口约束之前&#xff0c;需要用create_generated_clock 先定义送出的随路时钟。 二、out…...

html2Canvas+jsPDF 下载PDF 遇到跨域的对象存储的图片无法显示

一、问题原因 对象存储的域名和你网址的域名不一样&#xff0c;此时用Canvas相关插件 将DOM元素转化为PDF&#xff0c;就会出现跨域错误。 二、解决办法 两步 1. 图片元素上设置属性 crossorigin"anonymous" 支持原生img和eleme组件 2. 存储桶设置资源跨域访问…...

【C#】并行编程实战:异步流

本来这章该讲的是 ASP .NET Core 中的 IIS 和 Kestrel &#xff0c;但是我看了下这个是给服务器用的。而我只是个 Unity 客户端程序&#xff0c;对于服务器的了解趋近于零。 鉴于我对服务器知识和需求的匮乏&#xff0c;这里就不讲原书&#xff08;大部分&#xff09;内容了。本…...

在家下载论文使用哪些论文下载工具比较好

在家下载论文如果不借助论文下载工具是非常艰难的事情&#xff0c;因为很多查找下载论文的数据库都是需要账号权限才可使用的。 例如&#xff0c;我们查找中文论文常用的知网、万方等数据库以及众多国外论文数据库。 在家下载知网、万方数据库论文可用下面的方法&#xff1a;…...

【LeetCode 算法】Handling Sum Queries After Update 更新数组后处理求和查询-Segment Tree

文章目录 Handling Sum Queries After Update 更新数组后处理求和查询问题描述&#xff1a;分析代码线段树 Tag Handling Sum Queries After Update 更新数组后处理求和查询 问题描述&#xff1a; 给你两个下标从 0 开始的数组 n u m s 1 和 n u m s 2 nums1 和 nums2 nums1…...

基于Linux操作系统中的MySQL数据库SQL语句(三十一)

MySQL数据库SQL语句 目录 一、SQL语句类型 1、DDL 2、DML 3、DCL 4、DQL 二、数据库操作 1、查看 2、创建 2.1、默认字符集 2.2、指定字符集 3、进入 4、删除 5、更改 6、练习 三、数据表操作 &#xff08;一&#xff09;数据类型 1、数值类型 1.1、TINYINT …...

【Matlab】基于BP神经网络的数据回归预测新数据(Excel可直接替换数据)

【Matlab】基于BP神经网络的数据回归预测新数据(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码5.1 main.m5.2 NewData.m6.完整代码6.1 main.m6.2 NewData.m7.运行结果1.模型原理 基于BP神经网络的数据回归预测是一种常见的机器学习方法,用于处…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...