【开发环境】Windows下搭建TVM编译器

关于搭建TVM编译器的官方文档:Install from Source — tvm 0.14.dev0 documentation (apache.org)
1. 安装Anaconda
首先我们需要安装Anaconda,因为其中包含着我们所需要的各类依赖:
进入Anaconda官网https://www.anaconda.com/products/distribution,下载Windows版本,下载完成后运行.exe,可以更改安装路径(如果安装路径不是C盘可能需要一点点额外的步骤,这个后面会提到),基本一路Next就可以了。需要注意的是,一定要把将Anaconda加入PATH勾选上,这样就可以节省配置Anaconda环境变量的步骤。
最终安装好Anaconda,可以在电脑应用菜单这里找到对应的cmd终端入口和powershell入口:

2. 编译LLVM
接下来是编译LLVM,简便行事我们可以使用已经手动编译好的库,进入https://winlibs.com/找到包含LLVM的包:

下载解压到任意目录里就行,最后把其中bin目录路径写入环境变量的PATH中,进入Anaconda的cmd终端中输入如下命令:
llvm-config --libdir
不报错并显示对应的库目录路径意味着前面的步骤都完成了,下面就开始搭建TVM。
3. 获取TVM源码
从github上获取最新版的TVM克隆到本地文件夹tvm中,记住务必要克隆而非直接下载ZIP解压否则后面编译会报错:
$ git clone --recursive http://github.com/apache/tvm tvm

新建一个build文件夹,从文件夹cmake中复制一份config.cmake拷贝到build文件夹中:
$ cd tvm$ mkdir build$ cp cmake/config.cmake build
当然源码获取并没有这么简单,这也是我踩的一个大坑了,如果现在查看build里的一些文件夹,你会发现很多是空的,这是因为它们是子仓库所以并没有跟随着一起将源码克隆到本地,反而只是将一个jit链接克隆了下来,我们接下来需要补充这一部分代码,进入github仓库的build文件夹下,将有蓝色链接(含有子仓库)的源码下载到本地,替换原来残缺的部分:

4. 构建虚拟环境
在Anaconda终端中切换到tvm的文件夹目录下,注意:如果你将Anaconda放在了非系统盘,那么你需要使用管理员身份进入终端。
使用如下命令构建并进入tvm-build的虚拟环境:
# Create a conda environment with the dependencies specified by the yamlconda env create --file conda/build-environment.yaml# Activate the created environmentconda activate tvm-build
这个过程会比较长,大概10分钟左右。
5. 使用cmake生成.dll库
打开build目录下的config.cmake文件,将USE_LLVM设为ON,修改完后保存:

进入build目录调用cmake进行生成:
cd buildcmake -A x64 -Thost=x64 ..cd ..cmake --build build --config Release -- /m
这里可能会有报错"No CMAKE_C_COMPILER could be found",意思就是没有编译器,我们可以去下载Visual Studio解决这个问题,如果你已经安装了Visual Studio但仍然存在这个问题,那你需要去Visual Studio Installer里下载安装一个SDK,这里我推荐最新版的windows 10 SDK。
这个步骤也要等待蛮久的,大概半小时(而且非常占用CPU,电脑风扇起飞),可以看到中途会有很多Warnings,不必理会(不是Error就知足吧Orz):

最终可以看到在tvm\build\Release目录下生成了tvm.dll的链接库:
6. python依赖库的安装
使用如下命令直接安装即可:
pip3 install typing_extensions numpy decorator attrspip3 install tornado psutil xgboost cloudpicklepip3 install ml_dtypes
7. 将TVM安装到python环境
这一步看其他大佬的博客都是直接配置PYTHONPATH环境变量,但实际上我们在Anaconda终端直接运行如下脚本即可完成:
cd pythonpython setup.py install
运行完毕,可以打开python的IDLE输入import tvm来简单测试一下我们搭建的TVM是否可用:

如上所示,没有报错基本就成功了。
当然如果不习惯用IDLE,也可以使用VSCode、PyCharm等代码编辑器,例如在VSCode的设置的命令面板中输入:
python:select interpreter
更换python解释器为我们刚刚添加tvm包的解释器:

如下所示,没有报错:

至此,我们的TVM编译器搭建就结束了,篇幅不长但是却浓缩了我踩坑的漫长经历QAQ
相关文章:
【开发环境】Windows下搭建TVM编译器
关于搭建TVM编译器的官方文档:Install from Source — tvm 0.14.dev0 documentation (apache.org) 1. 安装Anaconda 首先我们需要安装Anaconda,因为其中包含着我们所需要的各类依赖: 进入Anaconda官网https://www.anaconda.com/products/d…...
了解Unity编辑器之组件篇Video(二)
Video Player组件:用于在游戏中播放视频的组件。它提供了一系列属性来控制视频的播放、显示和交互。 1.Source(视频源):用于指定视频的来源。可以选择两种不同的视频源类型: (1)Vieo Clip&#…...
安全杂记 - 状态码,DNS,编码
目录 1.状态码2.DNS解析过程3.URL编码4.HTML实体编码5.FORM表单 1.状态码 200 - 请求成功 301 - 资源(网页等)被永久转移到其它URL 302 - 临时移动。与301类似。但资源只是临时被移动。客户端应继续使用原有URI 304 - 未修改。所请求的资源未修改&#…...
微信小程序 Page页面
新建页面只需要在app.json配置好路径,编译器自动新增了页面 项目首页,在app.json哪个页面是第一位,哪个页面就是小程序首页...
C语言实现基于Linux,epoll和多线程的WebServer服务器
代码结构: Server.h 头文件,对函数进行了声明 #pragma once #include<stdio.h> // 新建一个用于TCP监听的socket文件描述符,并返回 int initListenFd(unsigned short port);// 启动epoll int epollRun(int lfd);// accept建立连接 vo…...
微信小程序数字键盘(仿微信转账键盘)
微信小程序input自带数字输入键盘,不过是直接调用的系统键盘,无法个性化。 代码中使用使用了Vant WeappVant UI小程序版,这里就不介绍相关安装说明了,大家自行安装Vant Weapp。 json 用到的组件 {"usingComponents": …...
mac电脑强大的解压缩软件BetterZip 5.3.4 for Mac中文版及betterzip怎么压缩
BetterZip 5.3.4 for Mac 是Mac系统平台上一款功能强大的文件解压缩软件,不必解压就能快速地检查压缩文档。它能执行文件之间的合并并提供密码。使用它,用户可以更快捷的向压缩文件中添加和删除文件。它支持包括zip、gz、bz、bz2、tar、tgz、tbz、rar、7…...
Llama 2 来袭 - 在 Hugging Face 上玩转它
🤗 宝子们可以戳 阅读原文 查看文中所有的外部链接哟! 引言 今天,Meta 发布了 Llama 2,其包含了一系列最先进的开放大语言模型,我们很高兴能够将其全面集成入 Hugging Face,并全力支持其发布。Llama 2 的社…...
linux操作历史history定制
history记录 Linux中历史操作记录history是一个很有用的功能,有时忘记了,翻翻以前的命令,十分方便。 # 展示所有历史记录 history # 筛选历史记录 history | grep nginx # 清除全部记录 -c history -c # 指定删除某一行,15是行号 history -…...
微信小程序 wx.showModal
微信小程序--wx.showModal_海轰Pro的博客-CSDN博客...
Java开发中的分层开发和整洁架构
分层开发(横向拆分) 分层开发的概念: maven多模块开发项目管理.可以利用这种管理功能,实现一个项目的多层次模块开发–分层开发. 比如,当前项目HelloController依赖HelloService 这样做目的: 复杂开发过程.解耦(不调整依赖关系,无法解耦).分层开发(横向拆分)和纵向拆分的区别…...
Spring 多数据源方法级别注解实现
Spring框架提供了多种数据源管理方式,其中多数据源管理是其中之一。多数据源管理允许应用程序使用多个数据源,而不是只使用一个数据源,从而提高了应用程序的灵活性和可靠性。 多数据源管理的主要目的是让应用程序能够在不同的数据库之间切换&…...
Redis在云服务器上的安装与客户端连接配置
文章目录 Redis1.Redis的安装2.设置远程连接3.客户端连接3.1 客户端下载 Redis 1.Redis的安装 yum 安装 redis,使用以下命令,直接将 redis 安装到 linux 服务器: yum -y install redis 启动 redis使用以下命令,以后台运行方式启…...
语言模型输出端共享Embedding的重新探索
©PaperWeekly 原创 作者 | 苏剑林 单位 | 科学空间 研究方向 | NLP、神经网络 预训练刚兴起时,在语言模型的输出端重用 Embedding 权重是很常见的操作,比如 BERT、第一版的 T5、早期的 GPT,都使用了这个操作,这是因为当模型…...
Spring中事务失效的8中场景
1. 数据库引擎不支持事务 这里以 MySQL为例,MyISAM引擎是不支持事务操作的,一般要支持事务都会使用InnoDB引擎,根据MySQL 的官方文档说明,从MySQL 5.5.5 开始的默认存储引擎是 InnoDB,之前默认的都是 MyISAMÿ…...
安卓——转场动画
先创建一个名为anim的包 往里面写入两个xml页 为淡入淡出的效果 淡入效果 <alpha xmlns:android="http://schemas.android.com/apk/res/android"android:interpolator="@android:anim/accelerate_decelerate_interpolator"android:fromAlpha...
多位数码管动态扫描显示变化数据(数码管右移1)
/*----------------------------------------------- 内容:多位数码管分别显示不同数字,这种扫描显示方式成为动态扫描,并不停变化赋值 ------------------------------------------------*/ #include<reg52.h> //包含头文件࿰…...
充分了解java阻塞队列机制
多线程基础 1.阻塞队列1.1 什么是 阻塞队列1.2 阻塞队列的特点 1.3 阻塞队列常用方法1.3.1 抛出异常:add、remove、element1.3.2 返回结果但是不抛出异常offer、poll、peek1.3.3 阻塞put和take1.3.4 小结 1.4 常见的阻塞队列1.4.1 ArrayListBlockingQueue1.4.2 LinkedBlockingQ…...
安装使用LangChain时的报错解决
刚刚装了LangChain但是引入各种包都报错,原因貌似为 Python3.7 不支持 LangChain,需要开启一个新的Python3.10环境,再重新安装即可正常运行。 创建新的python环境 conda create -n new_env python3.10 重新安装 pip install langchain 这是当…...
【MySQL】库的操作
🌠 作者:阿亮joy. 🎆专栏:《零基础入门MySQL》 🎇 座右铭:每个优秀的人都有一段沉默的时光,那段时光是付出了很多努力却得不到结果的日子,我们把它叫做扎根 目录 👉库…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...


