当前位置: 首页 > news >正文

Megatron-LM、NVIDIA NeMo、MegaMolBART 、model_optim_rng.pt 文件是什么?

本文涉及以下几个概念,分别是:

Megatron和Megatron-LM-v1.1.5-3D_parallelism

NVIDIA NeMo

Megatron和Megatron-LM-v1.1.5-3D_parallelism是什么?

Megatron是由NVIDIA开发的一种用于训练大规模语言模型的开源框架。它旨在提供高效的分布式训练方案,使研究人员和开发者能够训练更大规模的模型来解决自然语言处理等领域的挑战。Megatron是基于PyTorch深度学习框架构建的,并且专注于利用多个GPU或超级计算机上的分布式训练进行高性能计算。它提供了一系列高级的优化和并行化策略,以实现对超大规模模型和数据集的有效训练。

Megatron-LM-v1.1.5-3D_parallelism是一个用于大规模语言模型训练的开源软件框架。它是由NVIDIA开发的,旨在通过并行计算来加速训练过程。它是Megatron下面的一部分。

NVIDIA NeMo

1)NVIDIA NeMo 是什么?

Official 地址:GitHub - NVIDIA/NeMo: NeMo: a toolkit for conversational AI

NVIDIA NeMo Megatron是在Megatron的基础上发展起来的开源项目,由NVIDIA研究人员主导,是一个框架,用于借助简单的 Python 界面构建、训练和微调 GPU 加速的语音和自然语言理解 (NLU) 模型。使用 NeMo,开发者可以创建新的模型架构,并通过易于使用的应用编程接口 (API),在 NVIDIA GPU 中的 Tensor Core 上使用混合精度计算对其进行训练。

NeMo Megatron 是此框架的一部分提供并行化技术(例如 Megatron-LM 研究项目中的工作流和张量并行化),用于训练大规模语言模型。

2)使用 NeMo Megatron 进行大规模语言建模

基于 Transformer 的大规模语言模型正应用于广泛的自然语言任务,例如文本生成、摘要和聊天机器人。NeMo Megatron 能够管理训练数据,并使用多达数万亿个参数训练大规模模型。它会执行数据管理任务,例如格式化、过滤、重复数据删除和混合,使用其他方式完成这些任务可能需要花费数月时间。它还使用张量并行性在节点内扩展模型,并利用数据和工作流并行性跨节点扩展数据和模型

NeMo Megatron 可依托数千个 GPU 提供高训练效率,使企业训练大规模 NLP 变得可行。

NeMo Megatron 可以将经过训练的模型导出到 NVIDIA Triton™ 推理服务器,以在多个 GPU 和多个节点上运行大规模 NLP 模型。

NVIDIA NeMo | NVIDIA 开发者

MegaMolBART 是什么?

代码地址:GitHub - NVIDIA/MegaMolBART: A deep learning model for small molecule drug discovery and cheminformatics based on SMILES

它是根据Chemformer改造的:GitHub - MolecularAI/Chemformer

MegaMolBART是一个基于SMILES的小分子药物发现和化学信息学的深度学习模型。MegaMolBART使用NVIDIA的Megatron 框架,旨在开发大型transformer 模型。

MegaMolBART relies on NeMo. NeMo provides a robust environment for developing and deploying deep learning models, including Megatron models. NeMo provides enhancements to PyTorch Lightning, such as hyperparameter configurabilityconfiguarbility with YAML files and checkpoint management. It also enables the development and training of large transformer models using NVIDIA’s Megatron framework, which makes multi-GPU, multi-node training with data parallelism, model parallelism, and mixed precision.

The ZINC-15 database is used for pre-training. Approximately 1.45 Billion molecules (SMILES strings) 从满足下面条件中选出:

  1. molecular weight <= 500 Daltons,
  2. LogP <= 5,
  3. reactivity level was “reactive”,
  4. purchasability was “annotated”.

During pre-processing, the compounds are filtered to ensure a maximum length of 512 characters. Train, validation, and test splits are randomly split using a seed as 99% / 0.5% / 0.5%. Data canonicalization and augmentation during training are performed using RDKIT via masking and SMILES randomization, as described previously.

Overview - NVIDIA Docs

首先我在github上看到两个issue:

Convert megatron lm ckpt to nemo:Convert megatron lm ckpt to nemo · Issue #5517 · NVIDIA/NeMo · GitHub

Cannot Convert Megatron GPT checkpoint :Cannot Convert Megatron GPT checkpoint · Issue #14939 · huggingface/transformers · GitHub

相关文章:

Megatron-LM、NVIDIA NeMo、MegaMolBART 、model_optim_rng.pt 文件是什么?

本文涉及以下几个概念&#xff0c;分别是&#xff1a; Megatron和Megatron-LM-v1.1.5-3D_parallelism NVIDIA NeMo Megatron和Megatron-LM-v1.1.5-3D_parallelism是什么&#xff1f; Megatron是由NVIDIA开发的一种用于训练大规模语言模型的开源框架。它旨在提供高效的分布式…...

2023年信息系统项目管理师如何报名?老司机告诉你

信息系统项目管理师是全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;项目之一&#xff0c;是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试&#xff0c;既属于国家职业资格考试&#xff0c;又是职称资…...

linux ubuntu系统 命令备忘

一、安装软件包的命令 1、验证安装包是否安装 dpkg -s <软件包名> 2、从软件源服务器获取最新的软件信息并缓存到本地 apt update 3、从本地仓库中对比系统中所有已安装的软件&#xff0c;如果有新版本的话则进行升级 apt upgrade 4、列出本地仓库中所有的软件包名…...

我的第一个flutter项目(Android Webview)

前言&#xff1a;flutter开发环境搭建Flutter的开发环境搭建-图解_☆七年的博客-CSDN博客 第一个flutter简单项目&#xff0c;内容是一个主界面&#xff0c;其中&#xff1a; 1.内容点击数字自增 2.跳转一个空页&#xff0c; 3.跳转一个WebView界面 其中涉及添加主键&#xf…...

微信机器人搭建详细教程

确保已安装Python和pip。 在D盘上创建名为wxbot的文件夹&#xff0c;并将你的Python机器人项目文件放在这个目录中。 在D盘的wxbot文件夹中打开命令行工具&#xff0c;并创建一个新的Python虚拟环境&#xff08;可选&#xff09;&#xff1a; python -m venv venv激活虚拟环…...

opengauss安装

opengauss安装 系统环境 Redhat版本&#xff1a;redhat7.6 虚拟机ip&#xff1a;192.168.5.144 Gauss版本&#xff1a;openGauss-5.0.0-CentOS-64bit-all.tar.gz 企业版 一&#xff0e;准备软硬件环境 1.1 安装依赖包 yum -y install bzip2 python3 libaio-devel flex bis…...

什么是SVM算法?硬间隔和软间隔的分类问题

SVM全称是supported vector machine(支持向量机)&#xff0c;即寻找到一个超平面使样本分成两类&#xff0c;并且间隔最大。 SVM能够执行线性或⾮线性分类、回归&#xff0c;甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。…...

Normalization(BN and LN) in NN

Batch Normalization 称为批标准化。批是指一批数据&#xff0c;通常为 mini-batch&#xff1b;标准化是处理后的数据服从 N ( 0 , 1 ) N(0,1) N(0,1) 的正态分布。在训练过程中&#xff0c;数据需要经过多层的网络&#xff0c;如果数据在前向传播的过程中&#xff0c;尺度发…...

opencv-22 图像几何变换01-缩放-cv2.resize()(图像增强,图像变形,图像拼接)

什么是几何变换&#xff1f; 几何变换是计算机图形学中的一种图像处理技术&#xff0c;用于对图像进行空间上的变换&#xff0c;而不改变图像的内容。这些变换可以通过对图像中的像素位置进行调整来实现。 常见的几何变换包括&#xff1a; 平移&#xff08;Translation&#x…...

python机器学习(五)逻辑回归、决策边界、代价函数、梯度下降法实现线性和非线性逻辑回归

线性回归所解决的问题是把数据集的特征传入到模型中&#xff0c;预测一个值使得误差最小&#xff0c;预测值无限接近于真实值。比如把房子的其他特征传入到模型中&#xff0c;预测出房价&#xff0c; 房价是一系列连续的数值&#xff0c;线性回归解决的是有监督的学习。有很多场…...

聊聊Linq中.AsEnumerable(), AsQueryable() ,.ToList(),的区别和用法

聊聊Linq中.AsEnumerable(), AsQueryable() ,.ToList(),的区别和用法 当使用LINQ查询数据时&#xff0c;我们常常会面临选择使用.AsEnumerable(), .AsQueryable(), 和 .ToList()方法的情况。这些方法在使用时有不同的效果和影响&#xff0c;需要根据具体场景来选择合适的方法。…...

【机器学习】机器学习中的“本体”概念

一、说明 在机器学习中&#xff0c;本体越来越多地用于提供基于相似性分析和场景知识的 ML 模型。 在传统的基于标签的定义中&#xff0c;对象往往是孤立的&#xff0c;可扩展性差&#xff0c;存在重复的可能性&#xff0c;对象之间的关系无法体现。在基于本体的定义中&#xf…...

ChatGPT是否能够进行对话中的参考和指代解析?

ChatGPT在对话中的参考和指代解析方面有一定的潜力&#xff0c;但需要针对具体任务和上下文进行定制和优化。参考和指代解析是指理解对话中的代词、名词短语等表达方式所指代的具体对象或信息。在对话中&#xff0c;参考和指代解析对于理解上下文、保持对话连贯性和生成准确回复…...

网红项目AutoGPT源码内幕及综合案例实战(三)

AutoGPT on LangChain PromptGenerator等源码解析 本节阅读AutoGPT 的prompt_generator.py源代码,其中定义了一个PromptGenerator类和一个get_prompt函数,用于生成一个提示词信息。PromptGenerator类提供了添加约束、命令、资源和性能评估等内容的方法,_generate_numbered_l…...

第八章:list类

系列文章目录 文章目录 系列文章目录前言list的介绍及使用list的介绍list的使用list的构造函数list的迭代器list的容量list的成员访问list的增删改查 list与vector的对比总结 前言 list是STL的一种链表类&#xff0c;可以在常数范围内在任意位置进行插入和删除的序列式容器。 …...

VUE声音-报警-实现方式

1.先准备一个mp3文件包&#xff1a;&#xff08;这个24小时生效如果失效可留言&#xff0c;看到就会增加时效&#xff09; 获取mp3地址&#xff1a; https://www.aliyundrive.com/t/uQ8zqjn9JKSfm7QlGOSr2.代码内容 进入页面就会自动 播放mp3的内容信息了。 <template>…...

【Coppeliasim C++】焊接机械臂仿真

项目思维导图 该项目一共三个demo&#xff1a; 机械臂末端走直线 2. 变位机转台转动 3.机械臂末端多点样条运动 笔记&#xff1a; 基于等级的蚁群系统在3D网格地图中搜索路径的方法: 基于等级的蚁群系统(Hierarchical Ant Colony System,HACS)是一种改进的蚁群优化算法。它在传…...

【LeetCode】94.二叉树的中序遍历

题目 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入&#xff1a;root [1] 输…...

AWS IAM介绍

前言 AWS是世界上最大的云服务提供商&#xff0c;它提供了很多组件供消费者使用&#xff0c;其中进行访问控制的组件叫做IAM(Identity and Access Management)&#xff0c; 用来进行身份验证和对AWS资源的访问控制。 功能 IAM的功能总结来看&#xff0c;主要分两种&#xff1…...

MySQL碎片清理

为什么产生&#xff1f; 经过大量增删改的表&#xff0c;都可能存在碎片 MySQL数据结构是B树&#xff0c; 删除某一记录&#xff0c;只会标记为删除&#xff0c;后续插入一条该区间的记录&#xff0c;就会复用这个位置。 删除整个数据页的记录&#xff0c;则整个页标记为“可…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...