当前位置: 首页 > news >正文

React的hooks---useCallback useMemo

useCallback 和 useMemo 结合 React.Memo 方法的使用是常见的性能优化方式,可以避免由于父组件状态变更导致不必要的子组件进行重新渲染

useCallback

useCallback 用于创建返回一个回调函数,该回调函数只会在某个依赖项发生改变时才会更新,可以把回调函数传递给经过优化的并使用引用相等性去避免非必要渲染的子组件,在 props 属性相同情况下,React 将跳过渲染组件的操作并直接复用最近一次渲染的结果

import React, { useState, useCallback } from 'react';function SubmitButton(props) {const { onButtonClick, children } = props;console.log(`${children} updated`);return (<button onClick={onButtonClick}>{children}</button>);
}
// 使用 React.memo 检查 props 变更,复用最近一次渲染结果
SubmitButton = React.memo(submitButton);export default function CallbackForm() {const [count1, setCount1] = useState(0);const [count2, setCount2] = useState(0);const handleAdd1 = () => {setCount1(count1 + 1);}// 调用 useCallback 返回一个 memoized 回调,该回调在依赖项更新时才会更新const handleAdd2 = useCallback(() => {setCount2(count2 + 1);}, [count2]);return (<><div><p>count1: {count1}</p><SubmitButton onButtonClick={handleAdd1}>button1</SubmitButton></div><div><p>count2: {count2}</p><SubmitButton onButtonClick={handleAdd2}>button2</SubmitButton></div></>)
}

useCallback(fn, deps) 相当于 useMemo(() => fn, deps),以上 useCallback 可替换成 useMemo 结果如下:

const handleAdd2 = useMemo(() => {return () => setCount2(count2 + 1);
}, [count2]);

useMemo

把“创建”函数和依赖项数组作为参数传入 useMemo,它仅会在某个依赖项改变时才重新计算 memoized 值。这种优化有助于避免在每次渲染时都进行高开销的计算

使用注意:

  • 传入 useMemo 的函数会在渲染期间执行,不要在这个函数内部执行与渲染无关的操作
  • 如果没有提供依赖项数组,useMemo 在每次渲染时都会计算新的值
import React, { useState, useMemo } from 'react';function counterText({ countInfo }) {console.log(`${countInfo.name} updated`);return (<p>{countInfo.name}: {countInfo.number}</p>);
}
// // 使用 React.memo 检查 props 变更,复用最近一次渲染结果
const CounterText = React.memo(counterText);export default function Counter() {const [count1, setCount1] = useState(0);const [count2, setCount2] = useState(0);const countInfo1 = {name: 'count1',number: count1};// 使用 useMemo 缓存最近一次计算结果,会在依赖项改变时才重新计算const countInfo2 = useMemo(() => ({name: 'count2',number: count2}), [count2]);return (<><div><CounterText countInfo={countInfo1} /><button onClick={() => setCount1(count1 + 1)}>Add count1</button></div><div><CounterText countInfo={countInfo2} /><button onClick={() => setCount2(count2 + 1)}>Add count2</button></div></>);
}

 

相关文章:

React的hooks---useCallback useMemo

useCallback 和 useMemo 结合 React.Memo 方法的使用是常见的性能优化方式&#xff0c;可以避免由于父组件状态变更导致不必要的子组件进行重新渲染 useCallback useCallback 用于创建返回一个回调函数&#xff0c;该回调函数只会在某个依赖项发生改变时才会更新&#xff0c;…...

05. 容器资源管理

目录 1、前言 2、CGroup 2.1、是否开启CGroup 2.2、Linux CGroup限制资源能使用 2.2.1、创建一个demo 2.2.2、CGroup限制CPU使用 2.3、Linux CGroup限制内存使用 2.4、Linux CGroup限制IO 3、Docker对资源的管理 3.1、Docker对CPU的限制 3.1.1、构建一个镜像 3.1.2…...

通过ETL自动化同步飞书数据到本地数仓

一、飞书数据同步到数据库需求 使用飞书的企业都有将飞书的数据自动同步到本地数据库、数仓以及其他业务系统表的需求&#xff0c;主要是为了实现飞书的数据与业务系统进行流程拉通或数据分析时使用&#xff0c;以下是一些具体的同步场景示例&#xff1a; 组织架构同步&#…...

MySQL基础扎实——MySQL中各种数据类型之间的区别

在MySQL中&#xff0c;有各种不同的数据类型可供选择来存储不同类型的数据。下面是一些常见的数据类型以及它们之间的区别&#xff1a; 整数类型&#xff1a; TINYINT&#xff1a;1字节&#xff0c;范围为-128到127或0到255&#xff08;无符号&#xff09;。SMALLINT&#xff1…...

每天五分钟机器学习:多项式非线性回归模型

本文重点 在前面的课程中,我们学习了线性回归模型和非线性回归模型的区别和联系。多项式非线性回归模型是一种用于拟合非线性数据的回归模型。与线性回归模型不同,多项式非线性回归模型可以通过增加多项式的次数来适应更复杂的数据模式。在本文中,我们将介绍多项式非线性回…...

ETH网络学习

概要 ETH网络是一个P2P网络&#xff0c;整个网络又区分为“执行层”与“共识层”。“执行层”节点负责交易交换&#xff0c;“共识层”节点负责区块打包、区块验证、区块同步和链同步。 执行层 执行层分为“服务发现”与“DevP2P”&#xff0c;两者共同并行执行。 服务发现…...

01-将函数参数化进行传递

项目源码&#xff1a;https://github.com/java8/ 1 应对不断变化的需求 在我们进行开发中&#xff0c;经常需要面临需求的不断变更&#xff0c;我们可以将行为参数化以适应不断变更的需求。 行为参数化就是可以帮助我们处理频繁变更的需求的一种软件开发模式 我们可以将代码…...

数据结构【栈和队列】

第三章 栈与队列 一、栈 1.定义&#xff1a;只允许一端进行插入和删除的线性表&#xff0c;结构与手枪的弹夹差不多&#xff0c;可以作为实现递归函数&#xff08;调用和返回都是后进先出&#xff09;调用的一种数据结构&#xff1b; 栈顶&#xff1a;允许插入删除的那端&…...

MATLAB | 产生阿尔法稳定分布噪声并作出概率密度函数

一、问题描述 想产生不同特征参数的α稳定随机变量&#xff0c;并且作出其概率密度函数进行对比。 二、解决思路 运行了MATLAB的官方实例代码&#xff1a; openExample(‘stats/ComparePDFsOfStableDistributionsExample’) &#xff08;1&#xff09;使用makedist()函数生成…...

深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 相关文章&#xff1a; 机器学习中的数学——激活函数&#xff1a;Softmax函数 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于沿dim的…...

Vue2学习笔记

vue是根据数据来构建用户界面的一套框架 创建一个vue实例 <!-- 1.创建一个容器 2.引入vue.js开发版本&#xff08;全局的&#xff09; 3.创建实例对象 4.配置选项 > 完成渲染 --> <div id"app">{{ msg }} </div> <script srcvue.js><…...

Java 悲观锁 乐观锁

锁可以从不同的角都分类。其中乐观锁和悲观锁是一种分类方式 一、悲观锁、乐观锁定义 悲观锁就是我们常说到的锁。对于悲观锁来说&#xff0c;他总是认为每次访问共享资源时会发生冲突&#xff0c;所以必须每次数据操作加上锁&#xff0c;以保证临界区的程序同一时间只能有一个…...

优惠券秒杀(二)

库存超卖问题分析 库存超卖问题其本质就是多个线程操作共享数据产生的线程安全问题&#xff0c;即当一个线程在执行操作共享数据的多条代码的过程中&#xff0c;其他线程也参与了进来&#xff0c;导致了线程安全问题的产生。例如&#xff1a;线程1发送请求&#xff0c;查询库存…...

selenium的java方式打开IE浏览器

1.下载软件Selenium Driver 官方下载地址&#xff1a; ​ https://www.selenium.dev/downloads/解压selenium-java-3.141.59.zip文件到java项目 seleniumDemo&#xff0c;并降解压的文件放入依赖中&#xff08;1&#xff09;双击项目的src打开项目结构&#xff0c;或右键-打开…...

分类评估指标

文章目录 1. 混淆矩阵2. Precision(精准率)3. Recall(召回率)4. F1-score5. ROC曲线和AUC指标5.1 ROC 曲线5.2 绘制 ROC 曲线5.3 AUC 值6. API介绍6.1 **分类评估报告api**6.2 **AUC计算API**练习-电信客户流失预测1. 数据集介绍2. 处理流程3. 案例实现4. 小结1. 混淆矩阵 …...

OpenCV:图像直方图计算

图像直方图为图像中像素强度的分布提供了有价值的见解。通过了解直方图&#xff0c;你可以获得有关图像对比度、亮度和整体色调分布的信息。这些知识对于图像增强、图像分割和特征提取等任务非常有用。 本文旨在为学习如何使用 OpenCV 执行图像直方图计算提供清晰且全面的指南。…...

用QFramework来重构 祖玛游戏

资料 Unity - 祖玛游戏 GitHub 说明 用QF一个场景就够了&#xff0c;在UIRoot下切换预制体达到面板切换。 但测试中当然要有一个直接跳到测试面板的 测试脚本&#xff0c;保留测试Scene&#xff08;不然初学者也不知道怎么恢复测试Scene&#xff09;&#xff0c;所以全文按S…...

生活杂记-显示器尺寸

以下是常见显示器尺寸的对角线长度换算成厘米的结果&#xff08;已经四舍五入到最接近的厘米数&#xff09;&#xff1a; 19英寸显示器 ≈ 48.26厘米21.5英寸显示器 ≈ 54.61厘米24英寸显示器 ≈ 60.96厘米27英寸显示器 ≈ 68.58厘米32英寸显示器 ≈ 81.28厘米34英寸显示器 ≈…...

在CSDN学Golang云原生(Kubernetes Pod无状态部署)

一&#xff0c;静态pod Kubernetes中的Pod是可以动态创建、销毁的&#xff0c;如果希望Pod只使用静态的IP地址而不是自动生成一个IP地址&#xff0c;那么就需要使用静态Pod。 静态Pod是在kubelet启动时通过指定文件夹路径来加载的。当kubelet检测到这些配置文件变化后&#x…...

@Bean的作用

Bean通常和Configuration注解一起使用 Bean可以用在方法上&#xff0c;方法返回的对象交给spring容器管理&#xff0c;和提供给其他程序组件使用 Bean是一个注解&#xff0c;用于将方法标记为Spring容器中的一个Bean。具体来说&#xff0c;Bean注解可以用于方法上&#xff0c…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...