当前位置: 首页 > news >正文

【OpenGL学习】之着色器GLSL基础

基本类型:

类型说明
void空类型,即不返回任何值
bool布尔类型 true,false
int带符号的整数 signed integer
float带符号的浮点数 floating scalar
vec2, vec3, vec4n维浮点数向量 n-component floating point vector
bvec2, bvec3, bvec4n维布尔向量 Boolean vector
ivec2, ivec3, ivec4n维整数向量 signed integer vector
mat2, mat3, mat42x2, 3x3, 4x4 浮点数矩阵 float matrix
sampler2D2D纹理 a 2D texture
samplerCube盒纹理 cube mapped texture

基本结构和数组:

类型说明
结构struct type-name{} 类似c语言中的 结构体
数组float foo[3] glsl只支持1维数组,数组可以是结构体的成员

向量的分量访问:

glsl中的向量(vec2,vec3,vec4)往往有特殊的含义,比如可能代表了一个空间坐标(x,y,z,w),或者代表了一个颜色(r,g,b,a),再或者代表一个纹理坐标(s,t,p,q) 所以glsl提供了一些更人性化的分量访问方式.

vector.xyzw 其中xyzw 可以任意组合

vector.rgba 其中rgba 可以任意组合

vector.stpq 其中rgba 可以任意组合

vec4 v=vec4(1.0,2.0,3.0,1.0);
float x = v.x; //1.0
float x1 = v.r; //1.0
float x2 = v[0]; //1.0vec3 xyz = v.xyz; //vec3(1.0,2.0,3.0)
vec3 xyz1 = vec(v[0],v[1],v[2]); //vec3(1.0,2.0,3.0)
vec3 rgb = v.rgb; //vec3(1.0,2.0,3.0)vec2 xyzw = v.xyzw; //vec4(1.0,2.0,3.0,1.0);
vec2 rgba = v.rgba; //vec4(1.0,2.0,3.0,1.0);

运算符:

优先级(越小越高)运算符说明结合性
1()聚组:a*(b+c)N/A
2[] () . ++ --数组下标__[],方法参数__fun(arg1,arg2,arg3),属性访问__a.b__,自增/减后缀__a++ a--__L - R
3++ -- + - !自增/减前缀__++a --a__,正负号(一般正号不写)a ,-a,取反__!false__R - L
4* /乘除数学运算L - R
5+ -加减数学运算L - R
7< > <= >=关系运算符L - R
8== !=相等性运算符L - R
12&&逻辑与L - R
13^^逻辑排他或(用处基本等于!=)L - R
14||逻辑或L - R
15? :三目运算符L - R
16= += -= *= /=赋值与复合赋值L - R
17,顺序分配运算L - R

ps 左值与右值:

左值:表示一个储存位置,可以是变量,也可以是表达式,但表达式最后的结果必须是一个储存位置.右值:表示一个值, 可以是一个变量或者表达式再或者纯粹的值.操作符的优先级:决定含有多个操作符的表达式的求值顺序,每个操作的优先级不同.操作符的结合性:决定相同优先级的操作符是从左到右计算,还是从右到左计算。

基础类型间的运算:

glsl中,没有隐式类型转换,原则上glsl要求任何表达式左右两侧(l-value),(r-value)的类型必须一致 也就是说以下表达式都是错误的:

int a =2.0; //错误,r-value为float 而 lvalue 为int.
int a =1.0+2;
float a =2;
float a =2.0+1;
bool a = 0; 
vec3 a = vec3(1.0, 2.0, 3.0) * 2;

下面来分别说说可能遇到的情况:

1.float 与 int:

float与float , int与int之间是可以直接运算的,但float与int不行.它们需要进行一次显示转换.即要么把float转成int: int(1.0) ,要么把int转成float: float(1) ,以下表达式都是正确的:

int a=int(2.0);
float a= float(2);int a=int(2.0)*2 + 1;
float a= float(2)*6.0+2.3;

2.float 与 vec(向量) mat(矩阵):

vec,mat这些类型其实是由float复合而成的,当它们与float运算时,其实就是在每一个分量上分别与float进行运算,这就是所谓的逐分量运算.glsl里 大部分涉及vec,mat的运算都是逐分量运算,但也并不全是. 下文中就会讲到特例.

逐分量运算是线性的,这就是说 vec 与 float 的运算结果是还是 vec.

int 与 vec,mat之间是不可运算的, 因为vec和mat中的每一个分量都是 float 类型的. 无法与int进行逐分量计算.

下面枚举了几种 float 与 vec,mat 运算的情况

vec3 a = vec3(1.0, 2.0, 3.0);
mat3 m = mat3(1.0);
float s = 10.0;
vec3 b = s * a; // vec3(10.0, 20.0, 30.0)
vec3 c = a * s; // vec3(10.0, 20.0, 30.0)
mat3 m2 = s * m; // = mat3(10.0)
mat3 m3 = m * s; // = mat3(10.0)

3. vec(向量) 与 vec(向量):

两向量间的运算首先要保证操作数的阶数都相同.否则不能计算.例如: vec3*vec2 vec4+vec3 等等都是不行的.

它们的计算方式是两操作数在同位置上的分量分别进行运算,其本质还是逐分量进行的,这和上面所说的float类型的 逐分量运算可能有一点点差异,相同的是 vec 与 vec 运算结果还是 vec, 且阶数不变.

vec3 a = vec3(1.0, 2.0, 3.0);
vec3 b = vec3(0.1, 0.2, 0.3);
vec3 c = a + b; // = vec3(1.1, 2.2, 3.3)
vec3 d = a * b; // = vec3(0.1, 0.4, 0.9)

3. vec(向量) 与 mat(矩阵):

要保证操作数的阶数相同,且vec与mat间只存在乘法运算.

它们的计算方式和线性代数中的矩阵乘法相同,不是逐分量运算.

vec2 v = vec2(10., 20.);
mat2 m = mat2(1., 2.,  3., 4.);
vec2 w = m * v; // = vec2(1. * 10. + 3. * 20., 2. * 10. + 4. * 20.)
...vec2 v = vec2(10., 20.);
mat2 m = mat2(1., 2.,  3., 4.);
vec2 w = v * m; // = vec2(1. * 10. + 2. * 20., 3. * 10. + 4. * 20.)

向量与矩阵的乘法规则如下:

4. mat(矩阵) 与 mat(矩阵):

要保证操作数的阶数相同.

在mat与mat的运算中, 除了乘法是线性代数中的矩阵乘法外.其余的运算任为逐分量运算.简单说就是只有乘法是特殊的,其余都和vec与vec运算类似.

mat2 a = mat2(1., 2.,  3., 4.);
mat2 b = mat2(10., 20.,  30., 40.);
mat2 c = a * b; //mat2(1.*10.+3.*20.,2.*10.+4.*20.,1.* 30.+3.*40.,2.* 30.+4.*40.);mat2 d = a+b;//mat2(1.+10.,2.+20.,3.+30.,4.+40);

矩阵乘法规则如下:

变量限定符:

修饰符说明
none(默认的可省略)本地变量,可读可写,函数的输入参数既是这种类型
const声明变量或函数的参数为只读类型
attribute只能存在于vertex shader中,一般用于保存顶点或法线数据,它可以在数据缓冲区中读取数据
uniform在运行时shader无法改变uniform变量, 一般用来放置程序传递给shader的变换矩阵,材质,光照参数等等.
varying主要负责在vertex 和 fragment 之间传递变量

const:

和C语言类似,被const限定符修饰的变量初始化后不可变,除了局部变量,函数参数也可以使用const修饰符.但要注意的是结构变量可以用const修饰, 但结构中的字段不行.

const变量必须在声明时就初始化 const vec3 v3 = vec3(0.,0.,0.)

局部变量只能使用const限定符.

函数参数只能使用const限定符.

struct light {vec4 color;vec3 pos;//const vec3 pos1; //结构中的字段不可用const修饰会报错.};
const light lgt = light(vec4(1.0), vec3(0.0)); //结构变量可以用const修饰

attribute:

attribute变量是全局只读的,它只能在vertex shader中使用,只能与浮点数,向量或矩阵变量组合, 一般attribute变量用来放置程序传递来的模型顶点,法线,颜色,纹理等数据它可以访问数据缓冲区 (还记得__gl.vertexAttribPointer__这个函数吧)

attribute vec4 a_Position;

uniform:

uniform变量是全局只读的,在整个shader执行完毕前其值不会改变,他可以和任意基本类型变量组合, 一般我们使用uniform变量来放置外部程序传递来的环境数据(如点光源位置,模型的变换矩阵等等) 这些数据在运行中显然是不需要被改变的.

uniform vec4 lightPosition;

varying:

varying类型变量是 vertex shader 与 fragment shader 之间的信使,一般我们在 vertex shader 中修改它然后在fragment shader使用它,但不能在 fragment shader中修改它.

//顶点着色器
varying vec4 v_Color;
void main(){ ...v_Color = vec4(1.,1.,1.,1);
}//片元着色器
...
varying vec4 v_Color;
void main() {gl_FragColor = v_Color;
}
...

要注意全局变量限制符只能为 const、attribute、uniform和varying中的一个.不可复合.

函数参数限定符:

函数的参数默认是以拷贝的形式传递的,也就是值传递,任何传递给函数参数的变量,其值都会被复制一份,然后再交给函数内部进行处理. 我们可以为参数添加限定符来达到传递引用的目的,glsl中提供的参数限定符如下:

限定符说明
< none: default >默认使用 in 限定符
in复制到函数中在函数中可读写
out返回时从函数中复制出来
inout复制到函数中并在返回时复制出来

in 是函数参数的默认限定符,最终真正传入函数形参的其实是实参的一份拷贝.在函数中,修改in修饰的形参不会影响到实参变量本身.

out 它的作用是向函数外部传递新值,out模式下传递进来的参数是write-only的(可写不可读).就像是一个"坑位",坑位中的值需要函数给他赋予. 在函数中,修改out修饰的形参会影响到实参本身.

inout inout下,形参可以被理解为是一个带值的"坑位",及可读也可写,在函数中,修改inout修饰的形参会影响到实参本身.

glsl的函数:

glsl允许在程序的最外部声明函数.函数不能嵌套,不能递归调用,且必须声明返回值类型(无返回值时声明为void) 在其他方面glsl函数与c函数非常类似.

vec4 getPosition(){ vec4 v4 = vec4(0.,0.,0.,1.);return v4;
}void doubleSize(inout float size){size= size*2.0  ;
}
void main() {float psize= 10.0;doubleSize(psize);gl_Position = getPosition();gl_PointSize = psize;
}

构造函数:

glsl中变量可以在声明的时候初始化,float pSize = 10.0 也可以先声明然后等需要的时候在进行赋值.

聚合类型对象如(向量,矩阵,数组,结构) 需要使用其构造函数来进行初始化. vec4 color = vec4(0.0, 1.0, 0.0, 1.0);

//一般类型
float pSize = 10.0;
float pSize1;
pSize1=10.0;
...//复合类型
vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 color1;
color1 =vec4(0.0, 1.0, 0.0, 1.0);
...//结构
struct light {float intensity;vec3 position;
};
light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));//数组
const float c[3] = float[3](5.0, 7.2, 1.1);

类型转换:

glsl可以使用构造函数进行显式类型转换,各值如下:

bool t= true;
bool f = false;int a = int(t); //true转换为1或1.0
int a1 = int(f);//false转换为0或0.0float b = float(t);
float b1 = float(f);bool c = bool(0);//0或0.0转换为false
bool c1 = bool(1);//非0转换为truebool d = bool(0.0);
bool d1 = bool(1.0);

精度限定:

glsl在进行光栅化着色的时候,会产生大量的浮点数运算,这些运算可能是当前设备所不能承受的,所以glsl提供了3种浮点数精度,我们可以根据不同的设备来使用合适的精度.

在变量前面加上 highp mediump lowp 即可完成对该变量的精度声明.

lowp float color;
varying mediump vec2 Coord;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

我们一般在片元着色器(fragment shader)最开始的地方加上 precision mediump float; 便设定了默认的精度.这样所有没有显式表明精度的变量 都会按照设定好的默认精度来处理.

如何确定精度:

变量的精度首先是由精度限定符决定的,如果没有精度限定符,则要寻找其右侧表达式中,已经确定精度的变量,一旦找到,那么整个表达式都将在该精度下运行.如果找到多个, 则选择精度较高的那种,如果一个都找不到,则使用默认或更大的精度类型.

uniform highp float h1;
highp float h2 = 2.3 * 4.7; //运算过程和结果都 是高精度
mediump float m;
m = 3.7 * h1 * h2; //运算过程 是高精度
h2 = m * h1; //运算过程 是高精度
m = h2 – h1; //运算过程 是高精度
h2 = m + m; //运算过程和结果都 是中等精度
void f(highp float p); // 形参 p 是高精度
f(3.3); //传入的 3.3是高精度

invariant关键字:

由于shader在编译时会进行一些内部优化,可能会导致同样的运算在不同shader里结果不一定精确相等.这会引起一些问题,尤其是vertx shader向fragmeng shader传值的时候. 所以我们需要使用invariant 关键字来显式要求计算结果必须精确一致. 当然我们也可使用 #pragma STDGL invariant(all)来命令所有输出变量必须精确一致, 但这样会限制编译器优化程度,降低性能.

#pragma STDGL invariant(all) //所有输出变量为 invariant
invariant varying texCoord; //varying在传递数据的时候声明为invariant

限定符的顺序:

当需要用到多个限定符的时候要遵循以下顺序:

1.在一般变量中: invariant > storage > precision

2.在参数中: storage > parameter > precision

我们来举例说明:

invariant varying lowp float color; // invariant > storage > precisionvoid doubleSize(const in lowp float s){ //storage > parameter > precisionfloat s1=s;
}

预编译指令:

以 # 开头的是预编译指令,常用的有:

#define #undef #if #ifdef #ifndef #else
#elif #endif #error #pragma #extension #version #line

比如 #version 100 他的意思是规定当前shader使用 GLSL ES 1.00标准进行编译,如果使用这条预编译指令,则他必须出现在程序的最开始位置.

内置的宏:

__LINE__ : 当前源码中的行号.

__VERSION__ : 一个整数,指示当前的glsl版本 比如 100 ps: 100 = v1.00

GL_ES : 如果当前是在 OPGL ES 环境中运行则 GL_ES 被设置成1,一般用来检查当前环境是不是 OPENGL ES.

GL_FRAGMENT_PRECISION_HIGH : 如果当前系统glsl的片元着色器支持高浮点精度,则设置为1.一般用于检查着色器精度.

实例:

1.如何通过判断系统环境,来选择合适的精度:

#ifdef GL_ES //
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#endif

2.自定义宏:

#define NUM 100
#if NUM==100
#endif

内置的特殊变量

glsl程序使用一些特殊的内置变量与硬件进行沟通.他们大致分成两种 一种是 input类型,他负责向硬件(渲染管线)发送数据. 另一种是output类型,负责向程序回传数据,以便编程时需要.

在 vertex Shader 中:

output 类型的内置变量:

变量说明单位
highp vec4 gl_Position;gl_Position 放置顶点坐标信息vec4
mediump float gl_PointSize;gl_PointSize 需要绘制点的大小,(只在gl.POINTS模式下有效)float

在 fragment Shader 中:

input 类型的内置变量:

变量说明单位
mediump vec4 gl_FragCoord;片元在framebuffer画面的相对位置vec4
bool gl_FrontFacing;标志当前图元是不是正面图元的一部分bool
mediump vec2 gl_PointCoord;经过插值计算后的纹理坐标,点的范围是0.0到1.0vec2

output 类型的内置变量:

变量说明单位
mediump vec4 gl_FragColor;设置当前片点的颜色vec4 RGBA color
mediump vec4 gl_FragData[n]设置当前片点的颜色,使用glDrawBuffers数据数组vec4 RGBA color

内置的常量

glsl提供了一些内置的常量,用来说明当前系统的一些特性. 有时我们需要针对这些特性,对shader程序进行优化,让程序兼容度更好.

在 vertex Shader 中:

1.const mediump int gl_MaxVertexAttribs>=8

gl_MaxVertexAttribs 表示在vertex shader(顶点着色器)中可用的最大attributes数.这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

2.const mediump int gl_MaxVertexUniformVectors >= 128

gl_MaxVertexUniformVectors 表示在vertex shader(顶点着色器)中可用的最大uniform vectors数. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 128 个.

3.const mediump int gl_MaxVaryingVectors >= 8

gl_MaxVaryingVectors 表示在vertex shader(顶点着色器)中可用的最大varying vectors数. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

4.const mediump int gl_MaxVertexTextureImageUnits >= 0

gl_MaxVaryingVectors 表示在vertex shader(顶点着色器)中可用的最大纹理单元数(贴图). 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 甚至可以一个都没有(无法获取顶点纹理)

5.const mediump int gl_MaxCombinedTextureImageUnits >= 8

gl_MaxVaryingVectors 表示在 vertex Shader和fragment Shader总共最多支持多少个纹理单元. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

在 fragment Shader 中:

1.const mediump int gl_MaxTextureImageUnits >= 8

gl_MaxVaryingVectors 表示在 fragment Shader(片元着色器)中能访问的最大纹理单元数,这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

2.const mediump int gl_MaxFragmentUniformVectors >= 16

gl_MaxFragmentUniformVectors 表示在 fragment Shader(片元着色器)中可用的最大uniform vectors数,这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 16 个.

3.const mediump int gl_MaxDrawBuffers = 1

gl_MaxDrawBuffers 表示可用的drawBuffers数,在OpenGL ES 2.0中这个值为1, 在将来的版本可能会有所变化.

glsl中还有一种内置的uniform状态变量, gl_DepthRange 它用来表明全局深度范围.

结构如下:

struct gl_DepthRangeParameters {highp float near; // nhighp float far; // fhighp float diff; // f - n};uniform gl_DepthRangeParameters gl_DepthRange;

除了 gl_DepthRange 外的所有uniform状态常量都已在glsl 1.30 中废弃.

流控制

glsl的流控制和c语言非常相似,这里不必再做过多说明,唯一不同的是片段着色器中有一种特殊的控制流discard. 使用discard会退出片段着色器,不执行后面的片段着色操作。片段也不会写入帧缓冲区。

for (l = 0; l < numLights; l++)
{if (!lightExists[l]);continue;color += light[l];
}
...while (i < num)
{sum += color[i];i++;
}
...do{color += light[lightNum];lightNum--;
}while (lightNum > 0)...if (true)discard;

内置函数库

glsl提供了非常丰富的函数库,供我们使用,这些功能都是非常有用且会经常用到的. 这些函数按功能区分大改可以分成7类:

通用函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T abs(T x)返回x的绝对值
T sign(T x)比较x与0的值,大于,等于,小于 分别返回 1.0 ,0.0,-1.0
T floor(T x)返回<=x的最大整数
T ceil(T x)返回>=等于x的最小整数
T fract(T x)获取x的小数部分
T mod(T x, T y)
T mod(T x, float y)
取x,y的余数
T min(T x, T y)
T min(T x, float y)
取x,y的最小值
T max(T x, T y)
T max(T x, float y)
取x,y的最大值
T clamp(T x, T minVal, T maxVal)
T clamp(T x, float minVal,float maxVal)
min(max(x, minVal), maxVal),返回值被限定在 minVal,maxVal之间
T mix(T x, T y, T a)
T mix(T x, T y, float a)
取x,y的线性混合,x*(1-a)+y*a
T step(T edge, T x)
T step(float edge, T x)
如果 x<edge 返回 0.0 否则返回1.0
T smoothstep(T edge0, T edge1, T x)
T smoothstep(float edge0,float edge1, T x)
如果x<edge0 返回 0.0 如果x>edge1返回1.0, 否则返回Hermite插值

角度&三角函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T radians(T degrees)角度转弧度
T degrees(T radians)弧度转角度
T sin(T angle)正弦函数,角度是弧度
T cos(T angle)余弦函数,角度是弧度
T tan(T angle)正切函数,角度是弧度
T asin(T x)反正弦函数,返回值是弧度
T acos(T x)反余弦函数,返回值是弧度
T atan(T y, T x)
T atan(T y_over_x)
反正切函数,返回值是弧度

指数函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T pow(T x, T y)返回x的y次幂 xy
T exp(T x)返回x的自然指数幂 ex
T log(T x)返回x的自然对数 ln
T exp2(T x)返回2的x次幂 2x
T log2(T x)返回2为底的对数 log2
T sqrt(T x)开根号 √x
T inversesqrt(T x)先开根号,在取倒数,就是 1/√x

几何函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
float length(T x)返回矢量x的长度
float distance(T p0, T p1)返回p0 p1两点的距离
float dot(T x, T y)返回x y的点积
vec3 cross(vec3 x, vec3 y)返回x y的叉积
T normalize(T x)对x进行归一化,保持向量方向不变但长度变为1
T faceforward(T N, T I, T Nref)根据 矢量 N 与Nref 调整法向量
T reflect(T I, T N)返回 I - 2 * dot(N,I) * N, 结果是入射矢量 I 关于法向量N的 镜面反射矢量
T refract(T I, T N, float eta)返回入射矢量I关于法向量N的折射矢量,折射率为eta

矩阵函数:

mat可以为任意类型矩阵.

方法说明
mat matrixCompMult(mat x, mat y)将矩阵 x 和 y的元素逐分量相乘

向量函数:

下文中的 类型 T可以是 vec2, vec3, vec4, 且可以逐分量操作.

bvec指的是由bool类型组成的一个向量:

vec3 v3= vec3(0.,0.,0.);
vec3 v3_1= vec3(1.,1.,1.);
bvec3 aa= lessThan(v3,v3_1); //bvec3(true,true,true)
方法说明
bvec lessThan(T x, T y)逐分量比较x < y,将结果写入bvec对应位置
bvec lessThanEqual(T x, T y)逐分量比较 x <= y,将结果写入bvec对应位置
bvec greaterThan(T x, T y)逐分量比较 x > y,将结果写入bvec对应位置
bvec greaterThanEqual(T x, T y)逐分量比较 x >= y,将结果写入bvec对应位置
bvec equal(T x, T y)
bvec equal(bvec x, bvec y)
逐分量比较 x == y,将结果写入bvec对应位置
bvec notEqual(T x, T y)
bvec notEqual(bvec x, bvec y)
逐分量比较 x!= y,将结果写入bvec对应位置
bool any(bvec x)如果x的任意一个分量是true,则结果为true
bool all(bvec x)如果x的所有分量是true,则结果为true
bvec not(bvec x)bool矢量的逐分量取反

纹理查询函数:

图像纹理有两种 一种是平面2d纹理,另一种是盒纹理,针对不同的纹理类型有不同访问方法.

纹理查询的最终目的是从sampler中提取指定坐标的颜色信息. 函数中带有Cube字样的是指 需要传入盒状纹理. 带有Proj字样的是指带投影的版本.

以下函数只在vertex shader中可用:

vec4 texture2DLod(sampler2D sampler, vec2 coord, float lod);
vec4 texture2DProjLod(sampler2D sampler, vec3 coord, float lod);
vec4 texture2DProjLod(sampler2D sampler, vec4 coord, float lod);
vec4 textureCubeLod(samplerCube sampler, vec3 coord, float lod);

以下函数只在fragment shader中可用:

vec4 texture2D(sampler2D sampler, vec2 coord, float bias);
vec4 texture2DProj(sampler2D sampler, vec3 coord, float bias);
vec4 texture2DProj(sampler2D sampler, vec4 coord, float bias);
vec4 textureCube(samplerCube sampler, vec3 coord, float bias);

在 vertex shader 与 fragment shader 中都可用:

vec4 texture2D(sampler2D sampler, vec2 coord);
vec4 texture2DProj(sampler2D sampler, vec3 coord);
vec4 texture2DProj(sampler2D sampler, vec4 coord);
vec4 textureCube(samplerCube sampler, vec3 coord);

官方的shader范例:

下面的shader如果你可以一眼看懂,说明你已经对glsl语言基本掌握了.

Vertex Shader:

uniform mat4 mvp_matrix; //透视矩阵 * 视图矩阵 * 模型变换矩阵
uniform mat3 normal_matrix; //法线变换矩阵(用于物体变换后法线跟着变换)
uniform vec3 ec_light_dir; //光照方向
attribute vec4 a_vertex; // 顶点坐标
attribute vec3 a_normal; //顶点法线
attribute vec2 a_texcoord; //纹理坐标
varying float v_diffuse; //法线与入射光的夹角
varying vec2 v_texcoord; //2d纹理坐标
void main(void)
{//归一化法线vec3 ec_normal = normalize(normal_matrix * a_normal);//v_diffuse 是法线与光照的夹角.根据向量点乘法则,当两向量长度为1是 乘积即cosθ值v_diffuse = max(dot(ec_light_dir, ec_normal), 0.0);v_texcoord = a_texcoord;gl_Position = mvp_matrix * a_vertex;
}

Fragment Shader:

precision mediump float;
uniform sampler2D t_reflectance;
uniform vec4 i_ambient;
varying float v_diffuse;
varying vec2 v_texcoord;
void main (void)
{vec4 color = texture2D(t_reflectance, v_texcoord);//这里分解开来是 color*vec3(1,1,1)*v_diffuse + color*i_ambient//色*光*夹角cos + 色*环境光gl_FragColor = color*(vec4(v_diffuse) + i_ambient);
}

相关文章:

【OpenGL学习】之着色器GLSL基础

基本类型: 类型说明void空类型,即不返回任何值bool布尔类型 true,falseint带符号的整数 signed integerfloat带符号的浮点数 floating scalarvec2, vec3, vec4n维浮点数向量 n-component floating point vectorbvec2, bvec3, bvec4n维布尔向量 Boolean vectorivec2, ivec3, iv…...

Python爬虫基础知识点有哪些

目录 Python爬虫基础知识点 Requests库 Beautiful Soup库 正则表达式 数据存储 防止被反爬虫策略 爬虫调度和任务管理 认识robots.txt文件 反爬虫法律与道德 示例代码 Requests库 Beautiful Soup库 正则表达式 数据存储 防止被反爬虫策略 结语 网络世界中信息的…...

【CSS】 vh、rem 和 px 的区别

vh、rem 和 px 都是 CSS 中常见的长度单位&#xff0c;它们有以下区别&#xff1a; px&#xff08;像素&#xff09;是一个绝对单位&#xff0c;表示屏幕上的实际像素点。它的大小不会根据设备或浏览器的设置进行调整&#xff0c;是一个固定值。 rem&#xff08;根元素字体大小…...

如何设置板子从emmc启动-针对imx6ull

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习…...

使用Newtonsoft直接读取Json格式文本(Linq to Json)

使用Newtonsoft直接读取Json格式文本&#xff08;Linq to Json&#xff09; 使用 Newtonsoft.Json&#xff08;通常简称为 Newtonsoft&#xff09;可以轻松地处理 JSON 格式的文本。Newtonsoft.Json 是 .NET 中一个流行的 JSON 处理库&#xff0c;它提供了丰富的功能和灵活性。…...

服务器用友数据库中了locked勒索病毒后怎么解锁数据恢复

随着信息技术的迅速发展&#xff0c;服务器成为现代企业中不可或缺的重要设备。然而&#xff0c;由于网络安全风险的存在&#xff0c;服务器在日常运作中可能遭受各种威胁&#xff0c;包括恶意软件和勒索病毒攻击。近日&#xff0c;我们收到很多企业的求助&#xff0c;企业的用…...

Linux-MariaDB数据库的备份与初始化

Linux-MariaDB数据库的备份与初始化 缘起数据库备份数据库用户查询数据库新建用户数据库权限回收数据库更新密码数据库root密码重置 缘起 Linux系统下我们比较常用的数据库软件是开源又免费的MySQL。MariaDB是MySQL的一个分支&#xff0c;采用GPL授权许可&#xff0c;完全兼容…...

springboot-redis使用fastjson2

1、pom 注&#xff1a;springboot2.*使用fastjson2-extension-spring5&#xff0c;3.*使用fastjson2-extension-spring6 <fastjson.version>2.0.37</fastjson.version> <!-- json --> <dependency><groupId>com.alibaba.fastjson2</groupId…...

SOC FPGA之HPS模型设计(二)

根据SOC FPGA之HPS模型设计(一)&#xff0c; Quartus工程经过全编译后会产生Handoff文件夹、SOPCINFO文件、SVD文件 二、生成Preloader镜像文件 通过信息交换文件Handoff文件生成Preloader&#xff0c;需要用到SOC EDS Preloader也被称为spl(Second Program Loader)或u-boot…...

Go基础—反射,性能和灵活性的双刃剑

Go基础—反射&#xff0c;性能和灵活性的双刃剑 1 简介2 结构体成员赋值对比3 结构体成员搜索并赋值对比4 调用函数对比5 基准测试结果对比 1 简介 现在的一些流行设计思想需要建立在反射基础上&#xff0c;如控制反转&#xff08;Inversion Of Control&#xff0c;IOC&#x…...

MATLAB与ROS联合仿真(慕羽☆)全套开源资料索引

自2021年9月份开始进行MATLAB与ROS联合仿真相关的研究&#xff0c;至2021年12月份研究基本上结束&#xff0c;至今&#xff0c;已经近两年时间&#xff0c;期间曾收到过很多小伙伴的私信&#xff0c;想让我出点教程&#xff0c;期间我也曾多次想要抽点时间出教程&#xff0c;但…...

三、深入浅出WPF之控件与布局

三、控件与布局 图形化用户界面:Graphic User Interface ,它的便捷之处在于对数据的直观性表达,把抽象性的对象通过界面的形式展现出来。很多编程都要自己的GUI工具:像java的Swing、c++的QT 、C#的winform等等. 在日常工作中我们打交道最多的控件无外乎5类: (1)布局控件…...

社群积分运营策略:增加用户忠诚度

构建稳固的用户忠诚度是企业私域营销中至关重要的一环&#xff0c;而社群积分运营策略成为实现这一目标的有效手段。通过巧妙利用积分激励&#xff0c;社群积分运营可以吸引用户积极参与&#xff0c;增加用户的忠诚度和活跃度。本文将深入探讨几个实用的社群积分运营策略&#…...

推荐用于学习RN原生模块开发的开源库—react-native-ble-manager

如题RN的原生模块/Native Modules的开发是一项很重要的技能&#xff0c;但RN官网的示例又比较简单&#xff0c;然后最近我接触与使用、还有阅读了react-native-ble-manager的部份源码&#xff0c;发现里边完全包含了一个Native Modules所涉及的知识点/技术点&#xff0c;故特推…...

MySQL中锁的简介——全局锁

1.锁的概述及分类 2.全局锁的介绍 给数据库加全局锁&#xff1a; flush tables with read lock;数据备份&#xff1a; mysqldump备份指令 root用户名 1234 密码 itcast数据库名称 itcast.sql备份文件名称 mysqldump -uroot -p1234 itcast >itcast.sql;数据库全局锁解锁&am…...

RocketMQ集群4.9.2升级4.9.6版本

本文主要记录生产环境短暂停机升级RocketMQ版本的过程 一、整体思路 1.将生产环境MQ4.9.2集群同步到测试环境&#xff0c;并启动&#xff0c;确保正常运行。 2.参照4.9.2配置4.9.6集群 3.停掉4.9.2集群&#xff0c;启动4.9.6集群&#xff0c;测试确保正常运行。 4.停掉4.9.6集…...

具身智能controller---RT-1(Robotics Transformer)(上---方法介绍)

具身智能controller---RT-1&#xff08;Robotics Transformer&#xff09;&#xff08;上---方法介绍&#xff09; 相关链接摘要和简介相关工作与预备知识系统概述模型 RT-1: ROBOTICS TRANSFORMER模型 相关链接 github链接 主页链接&#xff08;包括论文和训练数据集&#xf…...

视频内存过大如何压缩变小?这个压缩方法了解一下

在日常生活中&#xff0c;不管是日常随手拍的视频还是在工作中遇到的视频文件&#xff0c;在编辑处理的时候&#xff0c;如果视频的内存过大&#xff0c;不仅会占用很大的内存&#xff0c;在传送的时候也会花费很长时间&#xff0c;这时候将视频给压缩一下就可以很好的解决这一…...

【Ansible】自动化部署工具-----Ansible

自动化部署工具-Ansible 1.Ansible概述2.ansible环境安装部署2.1 command模块2.2 shell模块2.3 cron模块2.4 user模块2.5 group模块2.6 copy模块2.7 file模块2.8 hostname模块2.9 ping模块2.10 yum模块2.11 service/systemd模块2.12 script模块2.13 mount模块2.14 archive模块2…...

Ubuntu下安装Node.js;npm

Ubuntu下安装Node.js curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash - sudo apt-get install -y nodejs Ubuntu下安装npm sudo apt-get install npm Ubuntu下指定版本升级npm sudo npm install npm8.15.0 -g Ubuntu下升级node 安装n模块&#xff1a;s…...

设计模式-模版方法模式

生活中处处存在模版&#xff0c;模版定义了大的框架&#xff0c;具体内容由使用者填充即可&#xff0c;这给很多人的生活、工作带来了很大的遍历。比如&#xff1a; PPT模版&#xff1a;好的PPT模版提供了更全面的叙述框架&#xff0c;更优美的UI画面&图标&#xff0c;提升…...

Linux 学习记录59(ARM篇)

Linux 学习记录59(ARM篇) 本文目录 Linux 学习记录59(ARM篇)一、IIC总线1. 概念2. IIC总线硬件连接 二、系统框图三、IIC时序1. 起始信号 / 停止信号2. 数据传输信号3. 应答信号 / 非应答信号4. 寻址信号 四、IIC协议1. 主机给从机发送一个字节(写)2. 主机给从机发送多个连续字…...

TypeScript -- 函数

文章目录 TypeScript -- 函数JS -- 函数的两种表现形式函数声明函数的表达式es6 箭头函数 TS -- 定义一个函数TS -- 函数声明使用接口(定义)ts 定义参数可选参数写法 -- ?的使用TS函数 -- 设置剩余参数函数重载 TypeScript – 函数 JS – 函数的两种表现形式 我们熟知js有两…...

网页开发基础——HTML

一、flask框架 Flask是一种轻量级的Python web应用程序框架&#xff0c;可以帮助使用者快速构建Web应用程序和API。由于其简洁、灵活和易于上手的特点&#xff0c;Flask被广泛用于开发小型到中型的Web应用程序和后端API。本次我们主要是使用flask框架&#xff0c;进行一个小型w…...

C# 继承,封装,多态等知识点

一&#xff1a;面向对象的三大特征&#xff1a;继承性&#xff0c;封装性&#xff0c;多态性 1&#xff1a;继承性&#xff1a;继承主要描述是类与类之间的关系&#xff0c;通过继承可以在无需重新编写原有的类的情况下&#xff0c;对原有的类的功能进行扩展。 2&#xff1a;封…...

决策树概述

文章目录 决策树介绍1.介绍**决策树API:**构建决策树的三个步骤决策树的优缺点通过sklearn实现决策树分类并进一步认识决策树2. ID3 决策树1. 信息熵2. 信息增益**定义:****根据信息增益选择特征方法是:****算法:**3. ID3算法步骤4. 例子:3. C4.5 决策树1. 信息增益率计算…...

青枫壁纸小程序V1.4.0(后端SpringBoot)

引言 那么距离上次的更新已经过去了5个多月&#xff0c;期间因为忙着毕业设计的原因&#xff0c;更新的速度变缓了许多。所以&#xff0c;这次的更新无论是界面UI、用户功能、后台功能都有了非常大的区别。希望这次更新可以给用户带来更加好的使用体验 因为热爱&#xff0c;更…...

Error: unknown flag: --export 【k8s,kubernets报错】

报错情况如下&#xff1a; [rootk8smaster ~]# kubectl get deploy nginx -oyaml --export > my2.yaml Error: unknown flag: --export See kubectl get --help for usage.原因&#xff1a; --export在所使用的版本中已被移除 解决&#xff1a;去除--export即可&#xff0c…...

进入linux系统中修改网段-ip

第一步 &#xff1a;开启虚拟机 cd 到 /etc/sysconfig/network-scripts 目录下&#xff0c;输入命令给ls,展示这个目录下文件和文件夹 第二步&#xff1a;进入到以ifcfg开头的文件 # ifcfg开头的文件&#xff0c;如果有多个网卡&#xff0c;有多个ifcfg-ensxx文件 命令…...

通过REST API接口上传Nexus仓库

一、Nexus API文档 API文档链接&#xff1a;Components API 二、上传API接口说明 在Nexus中可以直接调试api接口&#xff0c;url参考&#xff1a;http://localhost:8081/#admin/system/api 三、上传请求案例 $ curl -X POST "http://localhost:8081/service/rest/v1/c…...