当前位置: 首页 > news >正文

SQL力扣练习(七)

1.行程和用户(262)

表:Trips

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| id          | int      |
| client_id   | int      |
| driver_id   | int      |
| city_id     | int      |
| status      | enum     |
| request_at  | date     |     
+-------------+----------+
id 是这张表的主键。
这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。
status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。

表:Users

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| users_id    | int      |
| banned      | enum     |
| role        | enum     |
+-------------+----------+
users_id 是这张表的主键。
这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。
banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。

写一段 SQL 语句查出 "2013-10-01" 至 "2013-10-03" 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。

返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

查询结果格式如下例所示。

示例:

输入: 
Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| id | client_id | driver_id | city_id | status              | request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |
| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |
| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |
| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |
| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |
| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |
| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |
| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |
| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |
| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+Users 表:
+----------+--------+--------+
| users_id | banned | role   |
+----------+--------+--------+
| 1        | No     | client |
| 2        | Yes    | client |
| 3        | No     | client |
| 4        | No     | client |
| 10       | No     | driver |
| 11       | No     | driver |
| 12       | No     | driver |
| 13       | No     | driver |
+----------+--------+--------+
输出:
+------------+-------------------+
| Day        | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33              |
| 2013-10-02 | 0.00              |
| 2013-10-03 | 0.50              |
+------------+-------------------+
解释:
2013-10-01:- 共有 4 条请求,其中 2 条取消。- 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。- 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。- 取消率为 (1 / 3) = 0.33
2013-10-02:- 共有 3 条请求,其中 0 条取消。- 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。- 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。- 取消率为 (0 / 2) = 0.00
2013-10-03:- 共有 3 条请求,其中 1 条取消。- 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。- 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。- 取消率为 (1 / 2) = 0.50

方法一(Left Join)

补充知识:

ROUND(A,B)-A为需要四舍五入的值,B为保留小数位数

SUM(A)-A为求和字段

IF(A,B,C)-若A对,则值为B,否则为C

本题思路:

先求出来被禁止的用户和司机,然后再取反,然后再筛选一下时间,这就找到了非禁止用户的范围,接下来只需判断订单状态即可。

SELECT T.request_at AS `Day`, ROUND(SUM(IF(T.STATUS = 'completed',0,1))/ COUNT(T.STATUS),2) AS `Cancellation Rate`
FROM trips AS T LEFT JOIN 
(SELECT users_idFROM usersWHERE banned = 'Yes'
) AS A ON (T.Client_Id = A.users_id)
LEFT JOIN (SELECT users_idFROM usersWHERE banned = 'Yes'
) AS A1
ON (T.Driver_Id = A1.users_id)
WHERE A.users_id IS NULL AND A1.users_id IS NULL AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

方法二(NOT IN)

本题思路:

与方法一思路差不多,就是一个用的not in,一个用左连接,这里推荐方法一。

SELECT T.request_at AS `Day`, ROUND(SUM(IF(T.STATUS = 'completed',0,1))/ COUNT(T.STATUS),2) AS `Cancellation Rate`
FROM trips AS T
WHERE 
T.Client_Id NOT IN (SELECT users_idFROM usersWHERE banned = 'Yes'
)
AND
T.Driver_Id NOT IN (SELECT users_idFROM usersWHERE banned = 'Yes'
)
AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

方法三(Join)

# Write your MySQL query statement below
SELECT T.request_at AS `Day`, ROUND(SUM(IF(T.STATUS = 'completed',0,1))/ COUNT(T.STATUS),2) AS `Cancellation Rate`
FROM Trips AS T
JOIN Users AS U1 ON (T.client_id = U1.users_id AND U1.banned ='No')
JOIN Users AS U2 ON (T.driver_id = U2.users_id AND U2.banned ='No')
WHERE T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

2.游戏玩法分析I(511)

活动表 Activity

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| player_id    | int     |
| device_id    | int     |
| event_date   | date    |
| games_played | int     |
+--------------+---------+
在 SQL 中,表的主键是 (player_id, event_date)。
这张表展示了一些游戏玩家在游戏平台上的行为活动。
每行数据记录了一名玩家在退出平台之前,当天使用同一台设备登录平台后打开的游戏的数目(可能是 0 个)。

查询每位玩家 第一次登陆平台的日期

查询结果的格式如下所示:

Activity 表:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1         | 2         | 2016-03-01 | 5            |
| 1         | 2         | 2016-05-02 | 6            |
| 2         | 3         | 2017-06-25 | 1            |
| 3         | 1         | 2016-03-02 | 0            |
| 3         | 4         | 2018-07-03 | 5            |
+-----------+-----------+------------+--------------+Result 表:
+-----------+-------------+
| player_id | first_login |
+-----------+-------------+
| 1         | 2016-03-01  |
| 2         | 2017-06-25  |
| 3         | 2016-03-02  |
+-----------+-------------+

方法一(min)

select player_id,min(event_date) first_login from activity group by player_id

3.游戏玩法分析I(550)

Table: Activity

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| player_id    | int     |
| device_id    | int     |
| event_date   | date    |
| games_played | int     |
+--------------+---------+
(player_id,event_date)是此表的主键。
这张表显示了某些游戏的玩家的活动情况。
每一行是一个玩家的记录,他在某一天使用某个设备注销之前登录并玩了很多游戏(可能是 0)。

编写一个 SQL 查询,报告在首次登录的第二天再次登录的玩家的比率,四舍五入到小数点后两位。换句话说,您需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除以玩家总数。

查询结果格式如下所示:

Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1         | 2         | 2016-03-01 | 5            |
| 1         | 2         | 2016-03-02 | 6            |
| 2         | 3         | 2017-06-25 | 1            |
| 3         | 1         | 2016-03-02 | 0            |
| 3         | 4         | 2018-07-03 | 5            |
+-----------+-----------+------------+--------------+Result table:
+-----------+
| fraction  |
+-----------+
| 0.33      |
+-----------+
只有 ID 为 1 的玩家在第一天登录后才重新登录,所以答案是 1/3 = 0.33

方法一(AVG)

avg(a)-a为某字段,求某字段平均值

datediff(a,b)=1,a比b的日期大一,b是a的昨天

思路分析

先求出每个玩家第一次登录日期,然后求出左连接上第二天的,没有则为null,进而求解。

# Write your MySQL query statement below
select round(avg(a.event_date is not null), 2) fraction
from (select player_id, min(event_date) as loginfrom activitygroup by player_id) p 
left join activity a 
on p.player_id=a.player_id and datediff(a.event_date, p.login)=1

相关文章:

SQL力扣练习(七)

1.行程和用户(262) 表:Trips ----------------------- | Column Name | Type | ----------------------- | id | int | | client_id | int | | driver_id | int | | city_id | int | | status | enum | | reques…...

C语言假期作业 DAY 05

题目 一、选择题 1、如下程序的功能是&#xff08; &#xff09; #include <stdio.h> int main() { char ch[80] "123abcdEFG*&"; int j; puts(ch); for(j 0; ch[j] ! \0; j) if(ch[j] > A && ch[j] < Z) ch[j] ch[j] e - E; puts(ch)…...

php-golang-rpc使用roadrunner-server/goridge/v3/pkg/rpc和php的spiral/goridge3.2实践

golang代码&#xff1a; go get github.com/roadrunner-server/goridge/v3 package main import ( "fmt" "net" "net/rpc" goridgeRpc "github.com/roadrunner-server/goridge/v3/pkg/rpc" ) type App struct{} func (s *App) Hi(na…...

API常用签名验证方法(PHP实现)

使用场景 现在越来越多的项目使用的前后端分离的模式进行开发&#xff0c;后端开发人员使用API接口传递数据给到前端开发进行处理展示&#xff0c;在一些比较重要的修改数据接口&#xff0c;涉及金钱&#xff0c;用户信息等修改的接口如果不做防护验证&#xff0c;经常容易被人…...

kotlin高阶函数

kotlin高阶函数 函数式API:一个函数的入参数为Lambda表达式的函数就是函数式api 例子: public inline fun <T> Iterable<T>.filter(predicate: (T) -> Boolean): List<T> {return filterTo(ArrayList<T>(), predicate) }上面这段函数: 首先这个函…...

kotlin list集合树

kotlin list集合树 记录一下 data class AreaSchemaManageDto(var id: Long? null,var pid: Long? null,var label: String? null,var children: MutableList<AreaSchemaManageDto>? null ) : Serializable { }逻辑 fun getAll(): List<AreaSchemaManageDto&g…...

基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1星座图整形 4.2自编码器 4.3基于Autoencoder的星座图整形调制解调模型 4.4 实现过程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .…...

【Spring】Spring 总览

一、简单介绍一下 Spring Spring是一个全面的、企业应用开发的一站式解决方案&#xff0c;贯穿表现层、业务层、持久层&#xff0c;可以轻松和其他框架整合&#xff0c;具有轻量级、控制反转、面向切面、容器等特征。 轻量级 &#xff1a; 空间开销和时间开销都很轻量 控制反…...

微软、OpenAI用上“数据永动机” 合成数据是晨曦还是暮光?

微软、OpenAI、Cohere等公司已经开始测试使用合成数据来训练AI模型。Cohere首席执行官Aiden Gomez表示&#xff0c;合成数据可以适用于很多训练场景&#xff0c;只是目前尚未全面推广。 已有的&#xff08;通用&#xff09;数据资源似乎接近效能极限&#xff0c;开发人员认为&a…...

简单认识Redis 数据库的高可用

文章目录 一、Redis 高可用&#xff1a;1.简介&#xff1a;2、在Redis中实现高可用的技术 二、Redis持久化&#xff1a;1.持久化的功能&#xff1a;2.Redis 提供两种方式进行持久化&#xff1a; 三、RDB 持久化&#xff1a;1.简介&#xff1a;2.触发条件&#xff1a;4.启动时加…...

超级实用!,掌握这9个鲜为人知的CSS属性

微信搜索 【大迁世界】, 我会第一时间和你分享前端行业趋势&#xff0c;学习途径等等。 本文 GitHub https://github.com/qq449245884/xiaozhi 已收录&#xff0c;有一线大厂面试完整考点、资料以及我的系列文章。 快来免费体验ChatGpt plus版本的&#xff0c;我们出的钱 体验地…...

深圳国际新能源及智能网联汽车全产业博览会今年10月举办

7月25日&#xff0c;深圳市工业和信息化局与励展博览集团共同在深圳举办Automotive World China 2023深圳国际新能源及智能网联汽车全产业博览会&#xff08;简称“AWC 2023”&#xff09;全球推介启动大会&#xff0c;该博览会将于2023年10月11日-13日在深圳国际会展中心盛大举…...

【具有非线性反馈的LTI系统识别】针对反馈非线性的LTI系统,提供非线性辨识方案(SimulinkMatlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码、Simulink仿真实现 &#x1f4a5;1 概述 本文为具有反馈非线性的LTI系统提供了一种非线性识别方案&#xff0c;这取决于输入和LTI系统输出。对于MEMS来说尤其如此&#…...

Stable diffusion 和 Midjourney 怎么选?

通过这段时间的摸索&#xff0c;我将和你探讨&#xff0c;对普通人来说&#xff0c;Stable diffusion 和 Midjourney 怎么选&#xff1f;最重要的是&#xff0c;学好影视后期制作对 AI 绘画创作有哪些帮助&#xff1f;反过来&#xff0c;AI 绘画对影视后期又有哪些帮助&#xf…...

c++网络编程

网络编程模型 c/s 模型&#xff1a;客户端服务器模型b/s 模型&#xff1a;浏览器服务器模型1.tcp网络流程 服务器流程&#xff1a; 1.创建套接字2.完善服务器网络信息结构体3.绑定服务器网络信息结构体4.让服务器处于监听状态5.accept阻塞等待客户端连接信号6.收发数据7.关闭套…...

【沁恒蓝牙mesh】数据收发接口与应用层模型传递

本文主要描述了沁恒蓝牙mesh SDK的蓝牙数据收发接口&#xff0c;以及应用层的回调函数解析以及模型传递 这里写目录标题 1. 数据收发接口1.1【发送数据】1.2 【数据接收】 2. 应用层模型分析 1. 数据收发接口 1.1【发送数据】 /*&#xff08;1&#xff09;接口1 */ /*接口一&…...

Java类关系之代理(代理模式)

在Java中&#xff0c;如果一个类需要使用另一个类的方法&#xff0c;我们可以使用继承的方式实现&#xff0c;那么问题来了&#xff0c;如果这个类恰恰在逻辑关系上不能使用继承怎么办呢&#xff1f;比如说&#xff0c;飞机和控制台这两个类&#xff0c;控制台的方法有上下左右…...

java: 无法访问redis.clients.jedis.JedisPoolConfig

问题描述: 在编译java springboot程序的时候报错 java: 无法访问redis.clients.jedis.JedisPoolConfig 找不到redis.clients.jedis.JedisPoolConfig的类文件 问题分析 该问题是由于找不到JedisPoolConfig包导致的,很可能是没有添加相关的依赖 问题解决 在pom文件中添加依赖项…...

基于java中学教务管理系统设计与实现

摘要 随着现代技术的不断发展&#xff0c;计算机已经深度的应用到了当下的各个行业之中&#xff0c;教育行业也不例外。计算机对教育行业中的教务管理等内容的帮助&#xff0c;使得教职工从传统的手工办公像计算机辅助阶段迈进&#xff0c;并且实现了非常好的发展。现在的学校在…...

vscode设置java -Xmx最大堆内存

如果在vscode中直接运行java程序&#xff0c;想要改下每次运行的最大堆内存&#xff0c;按照如下修改 一、vscode安装java插件 当然前提是vscode在应用管理中已经安装了java语言的插件&#xff0c;Debugger for Java,如下图所示 二、CommandShiftP打开配置搜索框 三、搜索…...

组件开发系列--Apache Commons Chain

一、前言 Commons-chain是apache commons中的一个子项目,主要被使用在"责任链"的场景中,struts中action的调用过程,就是使用了"chain"框架做支撑.如果你的项目中,也有基于此种场景的需求,可以考虑使用它. 在责任链模式里&#xff0c;很多对象由每一个对象对…...

60 # http 的基本概念

什么是 HTTP&#xff1f; 通常的网络是在 TCP/IP 协议族的基础上来运作的&#xff0c;HTTP 是一个子集。http 基于 tcp 的协议&#xff0c;在 tcp 的基础上增加了一些规范&#xff0c;就是 header&#xff0c;学习 http 就是学习每个 header 它有什么作用。 TCP/IP 协议族 协…...

云计算迎来中场战役,MaaS或将成为弯道超车“新赛点”

科技云报道原创。 没有人能预见未来&#xff0c;但我们可以因循常识&#xff0c;去捕捉技术创新演进的节奏韵脚。 2023年最火的风口莫过于大模型。 2022年底&#xff0c;由美国初创企业OpenAI开发的聊天应用ChatGPT引爆市场&#xff0c;生成式AI成为科技市场热点&#xff0c…...

最新基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法

文献计量学是指用数学和统计学的方法&#xff0c;定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体&#xff0c;注重量化的综合性知识体系。特别是&#xff0c;信息可视化技术手段和方法的运用&#xff0c;可直观的展示主题的研究发展历程、研究现状、研究…...

Hive调优集锦(2)

3.8 Join 优化 Join优化整体原则&#xff1a; 1、优先过滤后再进行 join 操作&#xff0c;最大限度的减少参与 join 的数据量 2、小表 join 大表&#xff0c;最好启动 mapjoin&#xff0c;hive 自动启用 mapjoin, 小表不能超过25M&#xff0c;可以更改 3、Join on的条件相同的…...

一文谈谈Git

"And if forever lasts till now Alright" 为什么要有git&#xff1f; 想象一下&#xff0c;现如今你的老师同时叫你和张三&#xff0c;各自写一份下半年的学习计划交给他。 可是你的老师是一个极其"较真"的人&#xff0c;发现你俩写的学习计划太"水&…...

嵌入式数据库之SQLite

1.SQLite简介 轻量化&#xff0c;易用的嵌入式数据库&#xff0c;用于设备端的数据管理&#xff0c;可以理解成单点的数据库。传统服务器型数据 库用于管理多端设备&#xff0c;更加复杂。 SQLite是一个无服务器的数据库&#xff0c;是自包含的。这也称为嵌入式数据库&#x…...

idea下tomcat运行乱码问题解决方法

idea虚拟机选项添加-Dfile.encodingUTF-8...

人工智能TensorFlow MNIST手写数字识别——实战篇

上期文章TensorFlow手写数字-训练篇,我们训练了我们的神经网络,本期使用上次训练的模型,来识别手写数字(本期构建TensorFlow神经网络代码为上期文章分享代码) http://scs.ryerson.ca/~aharley/vis/conv/ 0、插入第三方库 from PIL import Image# 处理图片 import tensorf…...

Vue 本地应用-计数器

逻辑是在点击按钮的时候执行&#xff0c;那么要为按钮绑定点击事件&#xff0c;整体语法如下&#xff1a; <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>首页</title><link href"" type"text/c…...