当前位置: 首页 > news >正文

环境搭建-Ubuntu18.04.6系统TensorFlow BenchMark的GPU测试

1. 下载Ubuntu18.04.6镜像

登录阿里云官方镜像站:阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区

2. 测试环境

Server OS:Ubuntu 20.04.6 LTS
Kernel: Linux 5.4.0-155-generic x86-64
Docker Version:24.0.5, build ced0996
docker-compose version:1.25.0


Docker OS:Ubuntu 20.04.5 LTS
Nvidia GPU Version:NVIDIA-SMI 470.161.03
CUDA Version: 12.1
TensorFlow Version:1.15.1
python Version:3.8.10

3. Ubuntu下安装pip3 python3

Ubuntu下用apt命令安装

apt install python3-pip

4. Ubuntu下安装docker

1.卸载旧版本
ubuntu下自带了docker的库,不需要添加新的源。
但是ubuntu自带的docker版本太低,需要先卸载旧的再安装新的

apt-get remove docker docker-engine docker.io containerd runc

2.获取软件最新源
apt-get update

3.安装 apt 依赖包
用于通过HTTPS来获取仓库

apt-get -y install apt-transport-https ca-certificates curl software-properties-common

4.安装GPG证书
curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -

5.验证
apt-key fingerprint 0EBFCD88

6.设置稳定版仓库
sudo add-apt-repository "deb [arch=amd64] https://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"

二、安装 Docker Engine-Community
1.更新 apt 包索引
sudo apt-get update

提示:以下两种安装方式,选择一种即可

2.安装最新版本
sudo apt-get install docker-ce docker-ce-cli containerd.io

3.安装特定版本
apt-cache madison docker-ce
如 sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-cli=<VERSION_STRING> containerd.io
VERSION_STRING版本字符串表示安装特定版本,例如5:20.10.17~3-0~ubuntu-focal


4.测试
sudo docker run hello-world
提示:显示以下结果,表示安装成功

 5.启动
systemctl start docker

6.停止
systemctl stop docker

7.重启
systemctl restart docker

8.设置开机启动
sudo systemctl enable docker

5. Ubuntu下安装Docker Compose

一个使用Docker容器的应用,通常由多个容器组成。使用Docker Compose不再需要使用shell脚本来启动容器。Compose 通过一个配置文件来管理多个Docker容器,在配置文件中,所有的容器通过services来定义,然后使用docker-compose脚本来启动,停止和重启应用,和应用中的服务以及所有依赖服务的容器,非常适合组合使用多个容器进行开发的场景

 1. 卸载旧版本Docker Compose
如果之前安装过Docker Compose的旧版本,可以先卸载它们:

sudo rm /usr/local/bin/docker-compose

2. 下载Docker Compose最新版
从Docker官方网站下载Docker Compose最新版本的二进制文件:

sudo curl -L "https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

3. 授权Docker Compose二进制文
授予Docker Compose二进制文件执行权限

sudo chmod +x /usr/local/bin/docker-compose

4. 检查Docker Compose版本
docker-compose --version

安装版本为
Docker Compose version v2.20.2

6. CentOS7安装NVIDIA-Docker


依赖条件
如果使用的 Tensorflow 版本大于 1.4.0,要求 CUDA 9.0 以上版本

基于docker的测试环境的建立

测试环境基于docker构建,需要Nvidia GPU驱动的支持(不需要安装CUDA),安装好GPU驱动和docker以后,下载最新的包含tensorflow,CUDA,cudnn等的image,然后就可以运行tf_cnn_benchmark了

1. 下载nvidia-docker安装包

$ wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm

2. 安装nvidia-docker

$ rpm -ivh nvidia-docker-1.0.1-1.x86_64.rpm

3. 启动 nvidia-docker 服务
$ sudo systemctl restart nvidia-docker

4. 执行以下命令,若结果显示 active(running) 则说明启动成功
 

6. Ubuntu下安装NVIDIA Docker

官网地址搜索Installing on Ubuntu and DebianInstalling on Ubuntu and Debian — container-toolkit 1.13.5 documentation

错误处理

Troubleshooting — container-toolkit 1.13.5 documentation

1.$ curl https://get.docker.com | sh \ && sudo systemctl --now enable docker

2. $ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

3. $  distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container.list | \
         sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
         sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

4. $ sudo apt-get update

执行sudo apt-get update -y 报错如下

E: Conflicting values set for option Signed-By regarding source https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64/ /: /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg !=
E: The list of sources could not be read.

解决办法:docker和nvidia-docker的安装以及错误记录_小白tb的博客-CSDN博客

root@xx:/etc/apt# grep "nvidia.github.io" /etc/apt/sources.list.d/*

/etc/apt/sources.list.d/nvidia-container-toolkit.list:deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/$(ARCH) /
/etc/apt/sources.list.d/nvidia-container-toolkit.list:#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/experimental/ubuntu18.04/$(ARCH) /

root@xx:/etc/apt# cd /etc/apt/sources.list.d

root@xx:/etc/apt# rm -rf *

$ sudo apt-get install -y nvidia-container-toolkit

$ sudo nvidia-ctk runtime configure --runtime=docker

$ sudo systemctl restart docker

$ sudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi

执行最后一个命令行遇到,解决“docker: Error response from daemon: Unknown runtime specified nvidia”问题
解决方法:
重启就行

sudo systemctl daemon-reload
sudo systemctl restart docker

5. root@xx:/gpu# nvidia-docker -v
Docker version 24.0.5, build ced0996


7. docker和nvidia-docker的安装以及错误记录

错误一:sudo apt-get update出现
问题二:docker run --runtime=nvidia --rm nvidia/cuda:8.0-devel nvidia-smi出现
问题三:sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi出现
问题四 sudo docker run --runtime=nvidia --rm nvidia/cuda:10.0-base nvidia-smi 出现
最终安装成功啦!
参考链接:
nvidia-docker的安装

错误一:sudo apt-get update出现
参考链接
E: Conflicting values set for option Signed-By regarding source https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64/ /: /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg !=
E: The list of sources could not be read.
解决方法

grep "nvidia.github.io" /etc/apt/sources.list.d/*

会列出1个或者2个文件
然后进入/etc/apt/sources.list.d/文件夹中终端打开,将列出来的文件删除即可。

问题二:docker run --runtime=nvidia --rm nvidia/cuda:8.0-devel nvidia-smi出现
docker: Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Post http://%2Fvar%2Frun%2Fdocker.sock/v1.24/containers/create: dial unix /var/run/docker.sock: connect: permission denied. code example
解决方法
docker前加sudo就行了

问题三:sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi出现
“–gpus” requires API version 1.40, but the Docker daemon API version is 1.39
解决方法
docker版本和nvidia-docker版本不匹配,将两个全删除了,再安装即可。
参考链接:

ubuntu中docker彻底卸载
ubuntu16.04离线安装与卸载docker和nvidia-docker
低版本Docker升级高版本Docker【详细教程、成功避坑】

问题四 sudo docker run --runtime=nvidia --rm nvidia/cuda:10.0-base nvidia-smi 出现
docker: Error response from daemon: unknown or invalid runtime name: nvidia.

解决“docker: Error response from daemon: Unknown runtime specified nvidia”问题
解决方法:
重启就行

sudo systemctl daemon-reload
sudo systemctl restart docker

最终安装成功啦!

100. 参考资料

Ubuntu18.04 下载与安装(阿里云官方镜像站)_ubuntu18.04下载_smartvxworks的博客-CSDN博客

什么是 TensorFlow? | 数据科学 | NVIDIA 术语表

TensorFlow核心 | TensorFlow中文官网  |  TensorFlow CoreUbuntu系统安装Docker_ubuntu安装docker_流觞浮云的博客-CSDN博客

docker和nvidia-docker的安装以及错误记录_小白tb的博客-CSDN博客

相关文章:

环境搭建-Ubuntu18.04.6系统TensorFlow BenchMark的GPU测试

1. 下载Ubuntu18.04.6镜像 登录阿里云官方镜像站&#xff1a;阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 2. 测试环境 Server OS&#xff1a;Ubuntu 20.04.6 LTS Kernel: Linux 5.4.0-155-generic x86-64 Docker Version&#xff1a;24.0.5, build ced0996 docker-com…...

C# 汇总区间

228 汇总区间 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范围…...

加利福尼亚大学|3D-LLM:将3D世界于大规模语言模型结合

来自加利福尼亚大学的3D-LLM项目团队提到&#xff1a;大型语言模型 (LLM) 和视觉语言模型 (VLM) 已被证明在多项任务上表现出色&#xff0c;例如常识推理。尽管这些模型非常强大&#xff0c;但它们并不以 3D 物理世界为基础&#xff0c;而 3D 物理世界涉及更丰富的概念&#xf…...

HCIA实验四

一.实验要求&#xff1a; 1、R4为ISP&#xff0c;其上只能配置IP地址&#xff1b;R4与其他所有直连设备间均使用共有IP&#xff1b; 2、R3 - R5/6/7为MGRE环境&#xff0c;R3为中心站点&#xff1b; 3、整个网络配置OSPF环境&#xff0c;IP基于172.16.0.0/16网段划分&#x…...

常见的算法

查找算法 基本查找 Demo1 public static boolean basicSearch(int index,int[] arr){for (int i 0; i < arr.length; i) {if (indexarr[i]){return true;}}return false; } Demo2 //顺序查找&#xff0c;考虑重复&#xff0c;返回查找内容的索引 public static ArrayLis…...

Jetbrains 2023.2教程

IDEA 2023.2 激活演示 Pycharm 2023.2 激活演示 WebStorm 2023.2 激活演示 Clion 2023.2 激活演示 DataGrip 2023.2 PhpStorm 2023.1.4 激活演示&#xff08;2023.2尚未发布&#xff09; RubyMine 2023.2 激活演示 获取方式 仔细看每一个工具演示的图片 本文由 mdnice …...

OpenLayers入门,OpenLayers地图初始化时如何设置默认缩放级别、设置默认地图中心点、最大缩放级别和最小缩放级别以及默认坐标系

专栏目录: OpenLayers入门教程汇总目录 前言 OpenLayers地图初始化时如何设置默认缩放级别、初始化时设置默认地图中心点、设置最大缩放级别和最小缩放级别,超过缩放级别用户无法再放大和缩小,和设置默认坐标系。 二、依赖和使用 "ol": "^6.15.1"使用…...

css实现步骤条中的横线

实现步骤中的横线&#xff0c;我们使用css中的after选择器&#xff0c;content写空&#xff0c;然后给这个范围设定一个绝对定位&#xff0c;相当于和它设置伪类选择的元素的位置&#xff0c;直接看代码&#xff1a; const commonStyle useMemo(() > ({fontSize: 30px}),[]…...

【业务功能篇57】Springboot + Spring Security 权限管理 【上篇】

4.权限管理模块开发 4.1 权限管理概述 4.1.1 权限管理的意义 后台管理系统中&#xff0c;通常需要控制不同的登录用户可以操作的内容。权限管理用于管理系统资源&#xff0c;分配用户菜单、资源权限&#xff0c;以及验证用户是否有访问资源权限。 4.1.2 RBAC权限设计模型 …...

云计算需求激增带来的基础设施挑战及解决方案

云计算的指数级增长迅速改变了我们消费和存储数字信息的方式。随着企业和个人越来越依赖基于云的服务和数据存储&#xff0c;对支持这些服务的强大且可扩展的基础设施的需求已达到前所未有的水平。 云计算需求的快速增长 我们的日常生活越来越多地被新技术所渗透。流媒体服务、…...

R语言中的函数23:zoo::rollmean, rollmax, rollmedian, rollsum等等

文章目录 函数介绍rollmean()rollmax()rollmedianrollsum 函数介绍 rollmean(x, k, fill if (na.pad) NA, na.pad FALSE, align c("center", "left", "right"), ...)rollmax(x, k, fill if (na.pad) NA, na.pad FALSE, align c("cen…...

数据结构—数组和广义表

4.2数组 数组&#xff1a;按一定格式排列起来的&#xff0c;具有相同类型的数据元素的集合。 **一维数组&#xff1a;**若线性表中的数据元素为非结果的简单元素&#xff0c;则称为一维数组。 **一维数组的逻辑结构&#xff1a;**线性结构&#xff0c;定长的线性表。 **声明…...

服务器负载均衡算法有哪些

算法举例 服务器负载均衡算法是用于分配网络流量到多个服务器的策略&#xff0c;以实现负载均衡和提高系统性能。以下是一些常见的服务器负载均衡算法的详细说明&#xff1a; 轮询&#xff08;Round Robin&#xff09;算法&#xff1a; 轮询算法是最简单且常见的负载均衡算法之…...

2023年深圳杯数学建模B题电子资源版权保护问题

2023年深圳杯数学建模 B题 电子资源版权保护问题 原题再现&#xff1a; 版权又称著作权&#xff0c;包括发表权、署名权、修改权、保护作品完整权、复制权、发行权、出租权、展览权、表演权、放映权、广播权、信息网络传播权、摄制权、改编权、翻译权、汇编权及应当由著作权人…...

Easyui中datagrid切换页码后,再次根据其他条件查询,重置为第一页,序号从1开始显示

Easyui中datagrid切换页码后&#xff0c;再次根据其他条件查询&#xff0c;无法将序号重置为1开始显示 1、查询按钮2、datagrid的查询方法3、datagrid点击分页4、重置方法 1、查询按钮 <a href"javascript:Query(1,true)" id"btnQuery" class"eas…...

随笔03 考研笔记整理

图源&#xff1a;文心一言 上半年的博文整理&#xff0c;下半年依然会更新考研类的文章&#xff0c;有需要的小伙伴看向这里~~&#x1f9e9;&#x1f9e9; 另外&#xff0c;这篇文章可能是我上半年的努力成果之一&#xff0c;因此仅关注博主的小伙伴能够查看它~~&#x1f9e…...

一次线上OOM问题的个人复盘

我们一个java服务上线后&#xff0c;偶尔会发生内存OOM(Out Of Memory)问题&#xff0c;但由于OOM导致服务不响应请求&#xff0c;健康检查多次不通过&#xff0c;最后部署平台kill了java进程&#xff0c;这导致定位这次OOM问题也变得困难起来。 最终&#xff0c;在多次review代…...

【机器学习】基础知识点的汇总与总结!更新中

文章目录 一、监督学习1.1、单模型1.1.1、线性回归1.1.2、逻辑回归&#xff08;Logistic Regression&#xff09;1.1.3、K近邻算法&#xff08;KNN&#xff09;1.1.4、决策树1.1.5、支持向量机&#xff08;SVM&#xff09;1.1.6、朴素贝叶斯 1.2、集成学习1.2.1、Boosting1&…...

NLP杂记

来京一周余&#xff0c;初病将愈&#xff0c;终跑通llama及ViT&#xff0c;记于此—— 之前都是做的图像&#xff0c;大模型迁移基本上都是NLP相关的知识&#xff0c;很多东西和CV差距还是有点&#xff0c;再加上大模型对算力要求较高&#xff0c;基于云的操作对我一个习惯在本…...

算法通过村第二关-链表白银笔记

文章目录 再战链表|反转链表剑指 Offer II 024. 反转链表熟练掌握这两种解法建立头节点的解决思路不采用建立头节点的方法采用循环/递归的方式解决 总结 再战链表|反转链表 提示&#xff1a;多拿些酒来&#xff0c;因为生命只有乌有。 剑指 Offer II 024. 反转链表 如果不使用…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...

理想汽车5月交付40856辆,同比增长16.7%

6月1日&#xff0c;理想汽车官方宣布&#xff0c;5月交付新车40856辆&#xff0c;同比增长16.7%。截至2025年5月31日&#xff0c;理想汽车历史累计交付量为1301531辆。 官方表示&#xff0c;理想L系列智能焕新版在5月正式发布&#xff0c;全系产品力有显著的提升&#xff0c;每…...