算法通过村第二关-链表白银笔记
文章目录
- 再战链表|反转链表
- 剑指 Offer II 024. 反转链表
- 熟练掌握这两种解法
- 建立头节点的解决思路
- 不采用建立头节点的方法
- 采用循环/递归的方式解决
- 总结
再战链表|反转链表
提示:多拿些酒来,因为生命只有乌有。
剑指 Offer II 024. 反转链表


如果不使用链表的话,很快就能让他反转,不过也没有那么简单(用链表的话🥰)
熟练掌握这两种解法
建立头节点的解决思路
拿到题目,想一想怎么处理最好💡
那我们就先画个图吧💕

再来个过程图,这让就看的懂了:

- 建立一个头节点指向 1
- cur 直线待处理的头节点
- next 直线cur 的下一个节点
我们尝试写一下代码👌
重点理解一下 图

/*** 方法1:虚拟结点 ,并复用已有的结点** @param head* @return*/
public static ListNode reverseListByDummyNotCreate(ListNode head) {if(head == null){return null;}ListNode ans = new ListNode(-1);ListNode cur = head;while(cur != null){ListNode next = cur.next; // 所以这里 需要保留一下cur后面的节点// ans.next = cur.next;// ans.next = cur; 不能这样写cur.next = ans.next; // 改变当前节点的指针域 也就是说 现在cur后面的已经断了// 现在可以说 有两个指针指向 ans 的下一个节点ans.next = cur; // 更改指针域 下一个 ans 就不指向头节点了cur = next; // 修改cur当前节点 进行下一次循环}return ans.next;
}
这个是经典的解决方法,很常用,一定要数量掌握。
不采用建立头节点的方法
因为上面的方法更容易想到,一般面试官也不建议使用头节点😒,不使用头节点更体现你对链表的熟悉程度。
那我们就来挑战一下😁:
我们梳理一下思路:
先画个图hahah😁

注意:链表的结构
我们来看一下执行期间的流程图:
- 开始prev指向null cur 指向头节点 next 指向下一个节点
- 这样从cur 开始把链表切成两段 修改cur后面的指针域
- cur.next = pre; pre = cur; cur = next; 完成替换

注意:上面👆的代码太重要了,建议理解的基础上,刻在骨子里,以后用的地方很多。
采用循环/递归的方式解决
这个放到后面解决,目前先不讨论。
总结
这里最主要的是掌握链表反转,【不带头节点的】⭐
相关文章:
算法通过村第二关-链表白银笔记
文章目录 再战链表|反转链表剑指 Offer II 024. 反转链表熟练掌握这两种解法建立头节点的解决思路不采用建立头节点的方法采用循环/递归的方式解决 总结 再战链表|反转链表 提示:多拿些酒来,因为生命只有乌有。 剑指 Offer II 024. 反转链表 如果不使用…...
力扣题库刷题笔记75--颜色分类
1、题目如下: 2、个人Pyhon代码实现如下: 第一种思路是取巧,通过计数0、1、2的个数,去替换nums 备注第10行代码在本地可以跑过,但是力扣跑不过,所以就用了第10-16行代码进行替换 第二种思路是通过冒泡排序去…...
《面试1v1》如何提高远程用户的吞吐量
🍅 作者简介:王哥,CSDN2022博客总榜Top100🏆、博客专家💪 🍅 技术交流:定期更新Java硬核干货,不定期送书活动 🍅 王哥多年工作总结:Java学习路线总结…...
论文笔记--Distilling the Knowledge in a Neural Network
论文笔记--Distilling the Knowledge in a Neural Network 1. 文章简介2. 文章概括3 文章重点技术3.1 Soft Target3.2 蒸馏Distillation 4. 文章亮点5. 原文传送门 1. 文章简介 标题:Distilling the Knowledge in a Neural Network作者:Hinton, Geoffre…...
Mac上安装sshfs
目录 写在前面安装使用参考完 写在前面 1、本文内容 Mac上安装sshfs 2、平台 mac 3、转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/130156287 安装 参考:https://ports.macports.org/port/sshfs/ 通过port安装 点击啊insta…...
MQ公共特性介绍 (ActiveMQ, RabbitMQ, RocketMQ, Kafka对比)
本章介绍 本文主要介绍所有MQ框架都具备的公共特点,同时对比了一些目前比较主流MQ框架的优缺点,给大家做技术选型作参考。 文章目录 本章介绍MQ介绍适用场景异步通信案例一案例二 系统解耦削峰填谷广播通信总结 缺点MQ对比APQP历史AMQP是什么 MQ介绍 M…...
灵雀云Alauda MLOps 现已支持 Meta LLaMA 2 全系列模型
在人工智能和机器学习领域,语言模型的发展一直是企业关注的焦点。然而,由于硬件成本和资源需求的挑战,许多企业在应用大模型时仍然面临着一定的困难。为了帮助企业更好地应对上述挑战,灵雀云于近日宣布,企业可通过Alau…...
技术方案模版
技术方案模板 概述 1.1 术语 名称 说明 1.2 需求背景 来自产品的需求可以引用PRD和设计稿 技术类的改造需要写明背景业务用例分析 从需求中抽象出的核心用例详细设计 3.1 应用架构 3.2 模型设计 领域模型的关系,可以用UML 类图来实现 3.3. 详细实现 可以通过时序图…...
【Linux命令200例】cut强大的文本处理工具
🏆作者简介,黑夜开发者,全栈领域新星创作者✌,2023年6月csdn上海赛道top4。 🏆本文已收录于专栏:Linux命令大全。 🏆本专栏我们会通过具体的系统的命令讲解加上鲜活的实操案例对各个命令进行深入…...
《论文阅读》具有特殊Token和轮级注意力的层级对话理解 ICLR 2023
《论文阅读》具有特殊Token和轮级注意力的层级对话理解 前言简介问题定义模型构建知识点Intra-turn ModelingInter-turn Modeling分类前言 你是否也对于理解论文存在困惑? 你是否也像我之前搜索论文解读,得到只是中文翻译的解读后感到失望? 小白如何从零读懂论文?和我一…...
C# 定时器封装版
一、概述 在 Winform 等平台开发中,经常会用到定时器的功能,但项目定时器一旦写多了,容易使软件变卡,而且运行时间长了会造成软件的闪退,这个可能是内存溢出造成的,具体原因我也没去深究,另一个…...
前端学习——Vue (Day4)
组件的三大组成部分 组件的样式冲突 scoped <template><div class"base-one">BaseOne</div> </template><script> export default {} </script><style scoped> /* 1.style中的样式 默认是作用到全局的2.加上scoped可以让样…...
如果你是一个嵌入式面试官,你会问哪些问题?
以下是一些嵌入式面试中可能会问到的问题: 1.你对嵌入式系统有什么理解?它们与桌面或服务器系统有什么不同? 2.你用过哪些单片机和微处理器?对其中哪一款最熟悉? 3.你用什么编程语言编写嵌入式软件?你觉…...
学习笔记十三:云服务器通过Kubeadm安装k8s1.25,供后续试验用
Kubeadm安装k8s1.25 k8s环境规划:初始化安装k8s集群的实验环境先建生产环境服务器,后面可以通过生成镜像克隆node环境修改主机名配置yum源关闭防火墙关闭selinux配置时间同步配置主机 hosts 文件,相互之间通过主机名互相访问 **192.168.40.18…...
【Maven】Maven配置国内镜像
文章目录 1. 配置maven的settings.xml文件1.1. 先把镜像mirror配置好1.2. 再把仓库配置好 2. 在idea中引用3. 参考资料 网上配置maven国内镜像的文章很多,为什么选择我,原因是:一次配置得永生、仓库覆盖广、仓库覆盖全面、作者自用的配置。 1…...
ChatGPT有几个版本,哪个版本最强,如何选择适合自己的?
ChatGPT就像内容生产界的瑞士军刀。它可以是数学导师、治疗师、职业顾问、编程助手,甚至是旅行指南。只要你知道如何让它做你想做的事,ChatGPT几乎可以提供你要的任何东西。 但重要的是,你知道哪个版本的ChatGPT最能满足你的需求吗&#x…...
pg_standby备库搭建
1.主库 1.1主库参数文件修改 -- 该路径也需要在从库创建 mkdir -p /postgresql/archive chown -R postgres.postgres /postgresql/archive-- 主库配置归档 wal_levelreplica archive_modeon archive_commandcp %p /postgresql/archive/%f restore_commandcp /postgresql/arch…...
RNNLSTM
文章目录 前言引言应用示例-槽填充(slot filling)-订票系统二、循环神经网络(RNN)三、Long Short-term Memory (LSTM)LSTM原理[总结](https://zhuanlan.zhihu.com/p/42717426)LSTM例子lstm的训练RNN不但可以N2NMany2One(输入是一个矢量序列,但输出只有一个矢量)Many2Ma…...
到底什么是前后端分离
目录 Web 应用的开发主要有两种模式: 前后端不分离 前后端分离 总结 Web 应用的开发主要有两种模式: 前后端不分离 前后端分离 理解它们的区别有助于我们进行对应产品的测试工作。 前后端不分离 在早期,Web 应用开发主要采用前后端不…...
【React】精选5题
第1题:简述下 React 的生命周期?每个生命周期都做了什么? React 组件的生命周期可以分为三个阶段:挂载阶段、更新阶段和卸载阶段。每个生命周期方法都有特定的目的和功能。 挂载阶段: constructor:组件的构…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
