【朴素贝叶斯-新闻主题分类】
朴素贝叶斯对新闻进行分类
朴素贝叶斯算法是一种常用的文本分类方法,特别适用于自然语言处理任务,如新闻分类。在这篇博客中,我们将使用Python的scikit-learn库来实现朴素贝叶斯算法,并将其应用于新闻分类任务。
数据准备
首先,我们需要下载新闻数据集并进行数据准备。在这里,我们使用scikit-learn中的20个新闻组数据集,其中包含20个不同主题的新闻文本。我们从互联网上下载所有数据,并将其划分为训练集和测试集。
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split# 从互联网上下载所有数据
news = fetch_20newsgroups(subset='all')# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)
特征抽取
在进行文本分类任务时,我们需要将文本数据转换为可供机器学习算法使用的数字特征。这里我们使用TfidfVectorizer来将文本转换为TF-IDF特征向量,它考虑了词频和逆文档频率,能够更好地表示词的重要性。
from sklearn.feature_extraction.text import TfidfVectorizer# 对数据集进行特征抽取
transformer = TfidfVectorizer()
x_train = transformer.fit_transform(x_train)
x_test = transformer.transform(x_test)
构建朴素贝叶斯分类器
接下来,我们使用朴素贝叶斯算法来构建分类器。在scikit-learn中,我们可以使用MultinomialNB类来实现多项式朴素贝叶斯分类器。我们使用默认配置初始化分类器,并使用训练数据进行拟合。
from sklearn.naive_bayes import MultinomialNB# 使用默认配置初始化朴素贝叶斯分类器
estimator = MultinomialNB()
estimator.fit(x_train, y_train)
模型评估
现在,我们的朴素贝叶斯分类器已经训练好了,接下来我们使用测试数据进行预测,并对分类器性能进行评估。我们可以使用准确率来衡量分类器在测试数据上的性能。
# 进行模型评估
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)# 计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
相关文章:
【朴素贝叶斯-新闻主题分类】
朴素贝叶斯对新闻进行分类 朴素贝叶斯算法是一种常用的文本分类方法,特别适用于自然语言处理任务,如新闻分类。在这篇博客中,我们将使用Python的scikit-learn库来实现朴素贝叶斯算法,并将其应用于新闻分类任务。 数据准备 首先…...
安卓面试问题记录
目录 1. JNI和NDK1.谈谈你对JNI和NDK的理解2.简要的JNI调用过程:2. 线程、同步、异步1.Java创建线程的方式有几种?start()方法和 run()方法的区别2.Handler 机制和原理3.为什么在子线程中创建Handler会抛异常?4.Android中的ANR的解决方法5.intentservice有什么优点?6.okhtt…...
php-golang-jsonrpc2.0 rpc-codec/jsonrpc2和tivoka/tivoka实践
golang代码: package main import ( "context" "net" "net/rpc" "github.com/powerman/rpc-codec/jsonrpc2" ) type App struct{} type Res struct { Code int json:"code" Msg string json:"msg&quo…...
听力词汇笔记(6级)
2022年9月六级 1.personality traits:人格特征 2.all of this notwithstanding:尽管如此 3.come under:受到 4.scrutiny:关注 5.highly responsive to:对....高度敏感 6.preteen year:青春期前 7.susceptible to:受....影响 8.take sharp preced…...
【JVM】详细解析java创建对象的具体流程
目录 一、java创建对象的几种方式 1.1、使用new关键字 1.2、反射创建对象 1.2.1、Class.newInstance创建对象 1.2.2、调用构造器再去创建对象Constructor.newInstance 1.3、clone实现 1.4、反序列化 二、创建对象的过程 2.1、分配空间的方式 1、指针碰撞 2、空闲列表 …...
kafka怎么用代码读取数据
Kafka可以通过Java语言中的Kafka客户端库来读取数据。以下是一个简单的Java代码示例,通过Kafka Consumer API从Kafka集群中读取数据: java import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.…...
网关与路由器的区别
仅需2分钟,彻底明白网关的工作原理_哔哩哔哩_bilibili网关_百度百科 一、网关的概念 网关(Gateway)又称网间连接器、协议转换器。网关在网络层以上实现网络互连,是复杂的网络互连设备,仅用于两个高层协议不同的网络互连。网关既可以用于广域…...
助力工业物联网,工业大数据之工单事实指标需求分析【二十】
文章目录 1:工单事实指标需求分析2:工单事实指标构建 1:工单事实指标需求分析 目标:掌握DWB层工单事实指标表的需求分析 路径 step1:目标需求step2:数据来源 实施 目标需求:基于工单信息统计等…...
python_PyQt5开发工具结构基础
写在前面: 考虑已经陆陆续续在平台写了几篇PyQt5开发的小工具,后续还会继续发布新的新工具,这些工具都基于一个基础结构往上构建,这个基础结构是本人自己开发的习惯,在这里把工具的基础结构代码抽取出来,后…...
【C++】入门基础2
引用 概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间 类型& 引用变量名(对象名) 引用实体; 注意:引用类型必须和引用实体是…...
Reinforcement Learning with Code 【Chapter 8. Value Funtion Approximation】
Reinforcement Learning with Code This note records how the author begin to learn RL. Both theoretical understanding and code practice are presented. Many material are referenced such as ZhaoShiyu’s Mathematical Foundation of Reinforcement Learning, . 文章…...
常用InnoDB参数介绍
常用InnoDB参数介绍 1 状态参数1.1 InnoDB 缓冲池状态监控1.1.1 Innodb_buffer_pool_pages_total1.1.2 Innodb_buffer_pool_pages_data1.1.3 Innodb_buffer_pool_bytes_data1.1.4 Innodb_buffer_pool_pages_dirty1.1.5 Innodb_buffer_pool_bytes_dirty1.1.6 Innodb_buffer_pool…...
云原生网关部署新范式丨 Higress 发布 1.1 版本,支持脱离 K8s 部署
作者:澄潭 版本特性 Higress 1.1.0 版本已经 Release,K8s 环境下可以使用以下命令将 Higress 升级到最新版本: kubectl apply -f https://github.com/alibaba/higress/releases/download/v1.1.0/customresourcedefinitions.gen.yaml helm …...
【通讯录】--C语言
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
通过两种实现方式理解CANoe TC8 demo是如何判断接收的以太网报文里的字段的
假设有一个测试用例,需求是:编写一个测试用例,发送一条icmpv4 echo request报文给DUT,identifier字段设置为10。判断DUT能够回复icmpv4 echo reply报文,且identifier字段值为10。 实现:在canoe的simulation setup界面插入一个test节点,ip地址为:192.168.0.1,mac地址为…...
Mysql- 存储引擎
目录 1.Mysql体系结构 2.存储引擎简介 3.存储引擎特点 InnoDB MyISAM Memory 4.存储引擎选择 1.Mysql体系结构 MySQL整体的逻辑结构可以分为4层: 连接层:进行相关的连接处理、权限控制、安全处理等操作 服务层:服务层负责与客户层进行…...
vite / nuxt3 项目使用define配置/自定义,可以使用process.env.xxx获取的环境变量
每日鸡汤:每个你想要学习的瞬间,都是未来的你向自己求救 首先可以看一下我的这篇文章了解一下关于 process.env 的环境变量。 对于vite项目,在我们初始化项目之后,在浏览器中打印 process.env,只有 NODE_ENV这个变量&…...
在Linux、Ubuntu中跨平台编译ARM(AARCH64)平台的binutils
Binutils 是GNU(https://www.gnu.org/)提供的一组二进制工具的集合。通常,在已经安装了Linux操作系统的个人电脑上,系统就已经自带了这个工具集。但在进行嵌入式开发的时候,可能会用到支持ARM64平台的Binutils,这时就需要用到交叉编译。 此前,在【1】我们已经介绍过Ubun…...
SpringCloudAlibaba微服务实战系列(五)Sentinel1.8.5+Nacos持久化
Sentinel数据持久化 前面介绍Sentinel的流控、熔断降级等功能,同时Sentinel应用也在面临着一个问题:我们在Sentinel后台管理界面中配置了一堆流控、降级规则,但是Sentinel一重启,这些规则全部消失了。那么我们就要考虑Sentinel的持…...
pytest中conftest的用法以及钩子基本使用
一、conftest是什么? conftest是pytest进阶中的高级应用,最近正好用到这一块儿,研究之后,向大家分享该高级应用。 二、使用步骤 1.conftest代码块 以全局性使用driver为主,只启动一次浏览器: pytest.fi…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
