当前位置: 首页 > news >正文

随手笔记——演示如何提取 ORB 特征并进行匹配

随手笔记——演示如何提取 ORB 特征并进行匹配

  • 说明
  • 知识点
  • 源代码

说明

演示如何提取 ORB 特征并进行匹配

知识点

特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。

ORB 特征亦由关键点和描述子两部分组成。它的关键点称为“Oriented FAST”,是一种改进的 FAST 角点。它的描述子称为 BRIEF(Binary Robust Independent Elementary Feature)。因此,提取ORB 特征分为如下两个步骤:

  1. FAST 角点提取:找出图像中的“角点”。相较于原版的 FAST,ORB 中计算了特征点的主方
    向,为后续的 BRIEF 描述子增加了旋转不变特性。
  2. BRIEF 描述子:对前一步提取出特征点的周围图像区域进行描述。ORB 对 BRIEF 进行了一
    些改进,主要是指在 BRIEF 中使用了先前计算的方向信息。

源代码

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>using namespace std;
using namespace cv;int main(int argc, char **argv) {if (argc != 3) {cout << "usage: feature_extraction img1 img2" << endl;return 1;}//-- 读取图像Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);assert(img_1.data != nullptr && img_2.data != nullptr);//-- 初始化std::vector<KeyPoint> keypoints_1, keypoints_2;Mat descriptors_1, descriptors_2;Ptr<FeatureDetector> detector = ORB::create();Ptr<DescriptorExtractor> descriptor = ORB::create();Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");//-- 第一步:检测 Oriented FAST 角点位置chrono::steady_clock::time_point t1 = chrono::steady_clock::now();detector->detect(img_1, keypoints_1);detector->detect(img_2, keypoints_2);//-- 第二步:根据角点位置计算 BRIEF 描述子descriptor->compute(img_1, keypoints_1, descriptors_1);descriptor->compute(img_2, keypoints_2, descriptors_2);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;Mat outimg1;drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);imshow("ORB features", outimg1);//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离vector<DMatch> matches;t1 = chrono::steady_clock::now();matcher->match(descriptors_1, descriptors_2, matches);t2 = chrono::steady_clock::now();time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;//-- 第四步:匹配点对筛选// 计算最小距离和最大距离auto min_max = minmax_element(matches.begin(), matches.end(),[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });double min_dist = min_max.first->distance;double max_dist = min_max.second->distance;printf("-- Max dist : %f \n", max_dist);printf("-- Min dist : %f \n", min_dist);//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.std::vector<DMatch> good_matches;for (int i = 0; i < descriptors_1.rows; i++) {if (matches[i].distance <= max(2 * min_dist, 30.0)) {good_matches.push_back(matches[i]);}}//-- 第五步:绘制匹配结果Mat img_match;Mat img_goodmatch;drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);imshow("all matches", img_match);imshow("good matches", img_goodmatch);waitKey(0);return 0;
}

注:以上笔记仅供个人学习使用,如有侵权,请联系!

相关文章:

随手笔记——演示如何提取 ORB 特征并进行匹配

随手笔记——演示如何提取 ORB 特征并进行匹配 说明知识点源代码 说明 演示如何提取 ORB 特征并进行匹配 知识点 特征点由关键点&#xff08;Key-point&#xff09;和描述子&#xff08;Descriptor&#xff09;两部分组成。 ORB 特征亦由关键点和描述子两部分组成。它的关键…...

Python访问者模式介绍、使用

目录 一、Python访问者模式介绍 二、访问者模式使用 一、Python访问者模式介绍 访问者模式&#xff08;Visitor Pattern&#xff09;是一种行为型设计模式&#xff0c;它能够将算法与对象结构分离&#xff0c;使得算法可以独立于对象结构而变化。这个模式的主要思想是&#…...

深度学习实际使用经验总结

以下仅是个人在使用过程中的经验总结&#xff0c;请谨慎参考。 常用算法总结 图像分类 常用算法&#xff08;可作为其他任务的骨干网络&#xff09;&#xff1a;服务端&#xff1a;VGG、ResNet、ResNeXt、DenseNet移动端&#xff1a;MobileNet、ShuffleNet等适用场景&#x…...

【广州华锐互动】AR智慧机房设备巡检系统

AR智慧机房设备巡检系统是一种新型的机房巡检方式&#xff0c;它通过使用增强现实技术将机房设备、环境等信息实时呈现在用户面前&#xff0c;让巡检人员可以更加高效地完成巡检任务。 首先&#xff0c;AR智慧机房设备巡检系统具有极高的智能化程度。该系统可以根据用户设定的…...

关于Ubuntu 18.04 LTS环境下运行程序出现的问题

关于Ubuntu 18.04 LTS环境下运行程序出现的问题 1.运行程序时出现以下情况 2.检查版本 strings /lib/x86_64-linux-gnu/libc.so.6 |grep GLIBC_​ 发现Ubuntu18.04下的glibc版本最高为2.27,而现程序所使用的是glibc2.34,所以没办法运行, 3.解决办法 安装glibc2.34库, …...

「苹果安卓」手机搜狗输入法怎么调整字体大小及键盘高度?

手机搜狗输入法怎么调整字体大小及键盘高度&#xff1f; 1、在手机上准备输入文字&#xff0c;调起使用的搜狗输入法手机键盘&#xff1b; 2、点击搜狗输入法键盘左侧的图标&#xff0c;进入更多功能管理&#xff1b; 3、在搜狗输入法更多功能管理内找到定制工具栏&#xff0c…...

【人工智能】神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略

神经网络、前向传播、反向传播 文章目录 神经网络、前向传播、反向传播前向传播反向传播梯度下降局部最小值多层前馈网络表示能力多层前馈网络局限缓解过拟合的策略前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向…...

一个tomcat部署两个服务的server.xml模板

一个服务的文件夹名字叫hospital&#xff0c;一个服务的文件夹叫ROOT&#xff0c;一个tomcat运行两个服务如何配置呢&#xff1f;注意一个appBase为webapps&#xff0c;另一个appBase为webapps1,当然也可以放在一个webappps里面。 <Service name"Catalina">&l…...

CentOS 7安装Docker

文章目录 安装Docker1.CentOS安装Docker1.1.卸载&#xff08;可选&#xff09;1.2.安装docker1.3.启动docker1.4.配置镜像加速 2.CentOS7安装DockerCompose2.1.下载2.2.修改文件权限2.3.Base自动补全命令&#xff1a; 3.Docker镜像仓库3.1下载一个镜像 安装Docker Docker 分为 …...

Nginx前端部署

1. 前端打包 执行如下命令&#xff0c;构建前端代码&#xff0c;构建成功后会在目录dist下生成构建完成的文件&#xff0c;将dist整个文件夹拷贝到服务器中 npm install npm run build dev 2.nginx配置 进入nginx目录/usr/local/nginx/conf&#xff0c;修改nginx.conf文件&a…...

17网商品详情API:使用与数据解析方法

17网是一家知名的电商平台&#xff0c;提供了大量的商品选择。开发者可以通过17网的商品详情API来快速获取和展示商品的详细信息。 17网商品详情API简介 介绍17网商品详情API的作用和目的&#xff0c;解释为何使用该API可以实现丰富的商品详情展示功能。 获取API访问权限 说…...

解决新版 Idea 中 SpringBoot 热部署不生效

标题 依赖中添加 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <scope>runtime</scope> <opt…...

Node.js: express + MySQL实现修改密码

实现修改密码&#xff0c;本篇文章实现修改密码只考虑以下几个方面&#xff1a; &#xff08;1&#xff09;&#xff0c;获取旧密码 &#xff08;2&#xff09;&#xff0c;获取新密码 &#xff08;3&#xff09;&#xff0c;将获取到的旧密码与数据库中的密码进行比对&#xf…...

ArduPilot之433电传模块集成之H7Dual飞控Rx/Tx丝印问题

ArduPilot之433电传模块集成之H7Dual飞控Rx/Tx丝印问题 1. 源由2. 安装3. 排查3.1 电气连接3.2 软件配置3.3 模块测试3.4 通信测试3.5 定位问题 4. 总结5. 参考资料 1. 源由 鉴于最近iNav最新固件6.1.1出现远航炸机&#xff0c;还是回到相对可靠的Ardupilot&#xff0c;在Mavl…...

python爬虫优化手段

当使用Python进行网络资源爬取时&#xff0c;会涉及到网络请求、数据处理和存储等操作&#xff0c;这些操作可能会对电脑性能产生一定的影响。以下是一些关于Python爬取网络资源的常见注意事项&#xff1a; 网络请求频率&#xff1a;频繁的网络请求可能会对电脑性能产生较大的影…...

Bootstrap-学习文档

Bootstrap 简介 什么是 Bootstrap&#xff1f; Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架。 Bootstrap是前端开发中比较受欢迎的框架&#xff0c;简洁且灵活。它基于HTML、CSS和JavaScript&#xff0c;HTML定义页面元素&#xff0c;CSS定义页面布局&#x…...

【图像分类】CNN + Transformer 结合系列.1

介绍三篇结合使用CNNTransformer进行学习的论文&#xff1a;CvT&#xff08;ICCV2021&#xff09;&#xff0c;Mobile-Former&#xff08;CVPR2022&#xff09;&#xff0c;SegNetr&#xff08;arXiv2307&#xff09;. CvT: Introducing Convolutions to Vision Transformers, …...

Stable Diffusion - 扩展 SegmentAnything 和 GroundingDINO 实例分割算法 插件的配置与使用

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/131918652 Paper and GitHub&#xff1a; Segment Anything: SAM - Segment Anything GitHub: https://github.com/facebookresearch/s…...

自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 模型编程的新方法是使用提示&#xff08;Prompts&#xff09;。提示指的是模型的输入。这个输入通常由多个组件构成。PromptTemplate负责构建这个输入&#xff0c;LangChain提供了多个类和函数&#xff0c;使得构建和处…...

Elasticsearch-增删改查数据工作原理

集群 集群的基本概念&#xff1a; 集群&#xff1a;ES 集群由一个或多个 Elasticsearch 节点组成&#xff0c;每个节点配置相同的 cluster.name 即可加入集群&#xff0c;默认值为 “elasticsearch”。节点&#xff1a;一个 Elasticsearch 服务启动实例就是一个节点&#xff…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...