随手笔记——演示如何提取 ORB 特征并进行匹配
随手笔记——演示如何提取 ORB 特征并进行匹配
- 说明
- 知识点
- 源代码
说明
演示如何提取 ORB 特征并进行匹配
知识点
特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。
ORB 特征亦由关键点和描述子两部分组成。它的关键点称为“Oriented FAST”,是一种改进的 FAST 角点。它的描述子称为 BRIEF(Binary Robust Independent Elementary Feature)。因此,提取ORB 特征分为如下两个步骤:
- FAST 角点提取:找出图像中的“角点”。相较于原版的 FAST,ORB 中计算了特征点的主方
向,为后续的 BRIEF 描述子增加了旋转不变特性。 - BRIEF 描述子:对前一步提取出特征点的周围图像区域进行描述。ORB 对 BRIEF 进行了一
些改进,主要是指在 BRIEF 中使用了先前计算的方向信息。
源代码
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>using namespace std;
using namespace cv;int main(int argc, char **argv) {if (argc != 3) {cout << "usage: feature_extraction img1 img2" << endl;return 1;}//-- 读取图像Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);assert(img_1.data != nullptr && img_2.data != nullptr);//-- 初始化std::vector<KeyPoint> keypoints_1, keypoints_2;Mat descriptors_1, descriptors_2;Ptr<FeatureDetector> detector = ORB::create();Ptr<DescriptorExtractor> descriptor = ORB::create();Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");//-- 第一步:检测 Oriented FAST 角点位置chrono::steady_clock::time_point t1 = chrono::steady_clock::now();detector->detect(img_1, keypoints_1);detector->detect(img_2, keypoints_2);//-- 第二步:根据角点位置计算 BRIEF 描述子descriptor->compute(img_1, keypoints_1, descriptors_1);descriptor->compute(img_2, keypoints_2, descriptors_2);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;Mat outimg1;drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);imshow("ORB features", outimg1);//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离vector<DMatch> matches;t1 = chrono::steady_clock::now();matcher->match(descriptors_1, descriptors_2, matches);t2 = chrono::steady_clock::now();time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;//-- 第四步:匹配点对筛选// 计算最小距离和最大距离auto min_max = minmax_element(matches.begin(), matches.end(),[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });double min_dist = min_max.first->distance;double max_dist = min_max.second->distance;printf("-- Max dist : %f \n", max_dist);printf("-- Min dist : %f \n", min_dist);//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.std::vector<DMatch> good_matches;for (int i = 0; i < descriptors_1.rows; i++) {if (matches[i].distance <= max(2 * min_dist, 30.0)) {good_matches.push_back(matches[i]);}}//-- 第五步:绘制匹配结果Mat img_match;Mat img_goodmatch;drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);imshow("all matches", img_match);imshow("good matches", img_goodmatch);waitKey(0);return 0;
}
注:以上笔记仅供个人学习使用,如有侵权,请联系!
相关文章:
随手笔记——演示如何提取 ORB 特征并进行匹配
随手笔记——演示如何提取 ORB 特征并进行匹配 说明知识点源代码 说明 演示如何提取 ORB 特征并进行匹配 知识点 特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。 ORB 特征亦由关键点和描述子两部分组成。它的关键…...
Python访问者模式介绍、使用
目录 一、Python访问者模式介绍 二、访问者模式使用 一、Python访问者模式介绍 访问者模式(Visitor Pattern)是一种行为型设计模式,它能够将算法与对象结构分离,使得算法可以独立于对象结构而变化。这个模式的主要思想是&#…...
深度学习实际使用经验总结
以下仅是个人在使用过程中的经验总结,请谨慎参考。 常用算法总结 图像分类 常用算法(可作为其他任务的骨干网络):服务端:VGG、ResNet、ResNeXt、DenseNet移动端:MobileNet、ShuffleNet等适用场景&#x…...
【广州华锐互动】AR智慧机房设备巡检系统
AR智慧机房设备巡检系统是一种新型的机房巡检方式,它通过使用增强现实技术将机房设备、环境等信息实时呈现在用户面前,让巡检人员可以更加高效地完成巡检任务。 首先,AR智慧机房设备巡检系统具有极高的智能化程度。该系统可以根据用户设定的…...
关于Ubuntu 18.04 LTS环境下运行程序出现的问题
关于Ubuntu 18.04 LTS环境下运行程序出现的问题 1.运行程序时出现以下情况 2.检查版本 strings /lib/x86_64-linux-gnu/libc.so.6 |grep GLIBC_ 发现Ubuntu18.04下的glibc版本最高为2.27,而现程序所使用的是glibc2.34,所以没办法运行, 3.解决办法 安装glibc2.34库, …...
「苹果安卓」手机搜狗输入法怎么调整字体大小及键盘高度?
手机搜狗输入法怎么调整字体大小及键盘高度? 1、在手机上准备输入文字,调起使用的搜狗输入法手机键盘; 2、点击搜狗输入法键盘左侧的图标,进入更多功能管理; 3、在搜狗输入法更多功能管理内找到定制工具栏,…...
【人工智能】神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略
神经网络、前向传播、反向传播 文章目录 神经网络、前向传播、反向传播前向传播反向传播梯度下降局部最小值多层前馈网络表示能力多层前馈网络局限缓解过拟合的策略前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向…...
一个tomcat部署两个服务的server.xml模板
一个服务的文件夹名字叫hospital,一个服务的文件夹叫ROOT,一个tomcat运行两个服务如何配置呢?注意一个appBase为webapps,另一个appBase为webapps1,当然也可以放在一个webappps里面。 <Service name"Catalina">&l…...
CentOS 7安装Docker
文章目录 安装Docker1.CentOS安装Docker1.1.卸载(可选)1.2.安装docker1.3.启动docker1.4.配置镜像加速 2.CentOS7安装DockerCompose2.1.下载2.2.修改文件权限2.3.Base自动补全命令: 3.Docker镜像仓库3.1下载一个镜像 安装Docker Docker 分为 …...
Nginx前端部署
1. 前端打包 执行如下命令,构建前端代码,构建成功后会在目录dist下生成构建完成的文件,将dist整个文件夹拷贝到服务器中 npm install npm run build dev 2.nginx配置 进入nginx目录/usr/local/nginx/conf,修改nginx.conf文件&a…...
17网商品详情API:使用与数据解析方法
17网是一家知名的电商平台,提供了大量的商品选择。开发者可以通过17网的商品详情API来快速获取和展示商品的详细信息。 17网商品详情API简介 介绍17网商品详情API的作用和目的,解释为何使用该API可以实现丰富的商品详情展示功能。 获取API访问权限 说…...
解决新版 Idea 中 SpringBoot 热部署不生效
标题 依赖中添加 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <scope>runtime</scope> <opt…...
Node.js: express + MySQL实现修改密码
实现修改密码,本篇文章实现修改密码只考虑以下几个方面: (1),获取旧密码 (2),获取新密码 (3),将获取到的旧密码与数据库中的密码进行比对…...
ArduPilot之433电传模块集成之H7Dual飞控Rx/Tx丝印问题
ArduPilot之433电传模块集成之H7Dual飞控Rx/Tx丝印问题 1. 源由2. 安装3. 排查3.1 电气连接3.2 软件配置3.3 模块测试3.4 通信测试3.5 定位问题 4. 总结5. 参考资料 1. 源由 鉴于最近iNav最新固件6.1.1出现远航炸机,还是回到相对可靠的Ardupilot,在Mavl…...
python爬虫优化手段
当使用Python进行网络资源爬取时,会涉及到网络请求、数据处理和存储等操作,这些操作可能会对电脑性能产生一定的影响。以下是一些关于Python爬取网络资源的常见注意事项: 网络请求频率:频繁的网络请求可能会对电脑性能产生较大的影…...
Bootstrap-学习文档
Bootstrap 简介 什么是 Bootstrap? Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架。 Bootstrap是前端开发中比较受欢迎的框架,简洁且灵活。它基于HTML、CSS和JavaScript,HTML定义页面元素,CSS定义页面布局&#x…...
【图像分类】CNN + Transformer 结合系列.1
介绍三篇结合使用CNNTransformer进行学习的论文:CvT(ICCV2021),Mobile-Former(CVPR2022),SegNetr(arXiv2307). CvT: Introducing Convolutions to Vision Transformers, …...
Stable Diffusion - 扩展 SegmentAnything 和 GroundingDINO 实例分割算法 插件的配置与使用
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/131918652 Paper and GitHub: Segment Anything: SAM - Segment Anything GitHub: https://github.com/facebookresearch/s…...
自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]
分类目录:《自然语言处理从入门到应用》总目录 模型编程的新方法是使用提示(Prompts)。提示指的是模型的输入。这个输入通常由多个组件构成。PromptTemplate负责构建这个输入,LangChain提供了多个类和函数,使得构建和处…...
Elasticsearch-增删改查数据工作原理
集群 集群的基本概念: 集群:ES 集群由一个或多个 Elasticsearch 节点组成,每个节点配置相同的 cluster.name 即可加入集群,默认值为 “elasticsearch”。节点:一个 Elasticsearch 服务启动实例就是一个节点ÿ…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
