当前位置: 首页 > news >正文

【Python机器学习】实验04(2) 机器学习应用实践--手动调参

文章目录

  • 机器学习应用实践
    • 1.1 准备数据
      • 此处进行的调整为:要所有数据进行拆分
    • 1.2 定义假设函数
        • Sigmoid 函数
    • 1.3 定义代价函数
    • 1.4 定义梯度下降算法
        • gradient descent(梯度下降)
      • 此处进行的调整为:采用train_x, train_y进行训练
    • 1.5 绘制决策边界
    • 1.6 计算准确率
      • 此处进行的调整为:采用X_test和y_test来测试进行训练
    • 1.7 试试用Sklearn来解决
      • 此处进行的调整为:采用X_train和y_train进行训练
      • 此处进行的调整为:采用X_test和y_test进行训练
    • 1.8 如何选择超参数?比如多少轮迭代次数好?
    • 1.9 如何选择超参数?比如学习率设置多少好?
    • 1.10 如何选择超参数?试试调整l2正则化因子
    • 实验4(2) 完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

机器学习应用实践

上一次练习中,我们采用逻辑回归并且应用到一个分类任务。

但是,我们用训练数据训练了模型,然后又用训练数据来测试模型,是否客观?接下来,我们仅对实验1的数据划分进行修改

需要改的地方为:下面红色部分给出了具体的修改。

1 训练数据数量将会变少

2 评估模型时要采用测试集

1.1 准备数据

本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。因此,构建一个可以基于两次测试评分来评估录取可能性的分类模型。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1Exam2Admitted
034.62366078.0246930
130.28671143.8949980
235.84740972.9021980
360.18259986.3085521
479.03273675.3443761
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
#准备训练数据
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X.shape
(100, 3)
X=X.values
X.shape
(100, 3)
y=y.values
y.shape
(100,)

此处进行的调整为:要所有数据进行拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=0)
train_x,test_x,train_y,test_y
(array([[ 1.        , 82.36875376, 40.61825516],[ 1.        , 56.2538175 , 39.26147251],[ 1.        , 60.18259939, 86.3085521 ],[ 1.        , 64.03932042, 78.03168802],[ 1.        , 62.22267576, 52.06099195],[ 1.        , 62.0730638 , 96.76882412],[ 1.        , 61.10666454, 96.51142588],[ 1.        , 74.775893  , 89.5298129 ],[ 1.        , 67.31925747, 66.58935318],[ 1.        , 47.26426911, 88.475865  ],[ 1.        , 75.39561147, 85.75993667],[ 1.        , 88.91389642, 69.8037889 ],[ 1.        , 94.09433113, 77.15910509],[ 1.        , 80.27957401, 92.11606081],[ 1.        , 99.27252693, 60.999031  ],[ 1.        , 93.1143888 , 38.80067034],[ 1.        , 70.66150955, 92.92713789],[ 1.        , 97.64563396, 68.86157272],[ 1.        , 30.05882245, 49.59297387],[ 1.        , 58.84095622, 75.85844831],[ 1.        , 30.28671077, 43.89499752],[ 1.        , 35.28611282, 47.02051395],[ 1.        , 94.44336777, 65.56892161],[ 1.        , 51.54772027, 46.85629026],[ 1.        , 79.03273605, 75.34437644],[ 1.        , 53.97105215, 89.20735014],[ 1.        , 67.94685548, 46.67857411],[ 1.        , 83.90239366, 56.30804622],[ 1.        , 74.78925296, 41.57341523],[ 1.        , 45.08327748, 56.31637178],[ 1.        , 90.44855097, 87.50879176],[ 1.        , 71.79646206, 78.45356225],[ 1.        , 34.62365962, 78.02469282],[ 1.        , 40.23689374, 71.16774802],[ 1.        , 61.83020602, 50.25610789],[ 1.        , 79.94481794, 74.16311935],[ 1.        , 75.01365839, 30.60326323],[ 1.        , 54.63510555, 52.21388588],[ 1.        , 34.21206098, 44.2095286 ],[ 1.        , 90.54671411, 43.39060181],[ 1.        , 95.86155507, 38.22527806],[ 1.        , 85.40451939, 57.05198398],[ 1.        , 40.45755098, 97.53518549],[ 1.        , 32.57720017, 95.59854761],[ 1.        , 82.22666158, 42.71987854],[ 1.        , 68.46852179, 85.5943071 ],[ 1.        , 52.10797973, 63.12762377],[ 1.        , 80.366756  , 90.9601479 ],[ 1.        , 39.53833914, 76.03681085],[ 1.        , 52.34800399, 60.76950526],[ 1.        , 76.97878373, 47.57596365],[ 1.        , 38.7858038 , 64.99568096],[ 1.        , 91.5649745 , 88.69629255],[ 1.        , 99.31500881, 68.77540947],[ 1.        , 55.34001756, 64.93193801],[ 1.        , 66.74671857, 60.99139403],[ 1.        , 67.37202755, 42.83843832],[ 1.        , 89.84580671, 45.35828361],[ 1.        , 72.34649423, 96.22759297],[ 1.        , 50.4581598 , 75.80985953],[ 1.        , 62.27101367, 69.95445795],[ 1.        , 64.17698887, 80.90806059],[ 1.        , 94.83450672, 45.6943068 ],[ 1.        , 77.19303493, 70.4582    ],[ 1.        , 34.18364003, 75.23772034],[ 1.        , 66.56089447, 41.09209808],[ 1.        , 74.24869137, 69.82457123],[ 1.        , 82.30705337, 76.4819633 ],[ 1.        , 78.63542435, 96.64742717],[ 1.        , 32.72283304, 43.30717306],[ 1.        , 75.47770201, 90.424539  ],[ 1.        , 33.91550011, 98.86943574],[ 1.        , 89.67677575, 65.79936593],[ 1.        , 57.23870632, 59.51428198],[ 1.        , 84.43281996, 43.53339331],[ 1.        , 42.26170081, 87.10385094],[ 1.        , 49.07256322, 51.88321182],[ 1.        , 44.66826172, 66.45008615],[ 1.        , 97.77159928, 86.72782233],[ 1.        , 51.04775177, 45.82270146]]),array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0], dtype=int64),array([[ 1.        , 80.19018075, 44.82162893],[ 1.        , 42.07545454, 78.844786  ],[ 1.        , 35.84740877, 72.90219803],[ 1.        , 49.58667722, 59.80895099],[ 1.        , 99.8278578 , 72.36925193],[ 1.        , 74.49269242, 84.84513685],[ 1.        , 69.07014406, 52.74046973],[ 1.        , 60.45788574, 73.0949981 ],[ 1.        , 50.28649612, 49.80453881],[ 1.        , 83.48916274, 48.3802858 ],[ 1.        , 34.52451385, 60.39634246],[ 1.        , 55.48216114, 35.57070347],[ 1.        , 60.45555629, 42.50840944],[ 1.        , 69.36458876, 97.71869196],[ 1.        , 75.02474557, 46.55401354],[ 1.        , 61.37928945, 72.80788731],[ 1.        , 50.53478829, 48.85581153],[ 1.        , 77.92409145, 68.97235999],[ 1.        , 52.04540477, 69.43286012],[ 1.        , 76.0987867 , 87.42056972]]),array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],dtype=int64))
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((80, 3), (20, 3), (80,), (20,))
train_x.shape,train_y.shape
((80, 3), (20, 3))

1.2 定义假设函数

Sigmoid 函数

g g g 代表一个常用的逻辑函数(logistic function)为 S S S形函数(Sigmoid function),公式为: g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1
合起来,我们得到逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T x {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}x}}} h(x)=1+ewTx1

def sigmoid(z):return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

w=np.zeros((X.shape[1],1))
#定义假设函数h(x)=1/(1+exp^(-w.Tx))
def h(X,w):z=X@wh=sigmoid(z)return h

1.3 定义代价函数

 y_hat=sigmoid(X@w)
X.shape,y.shape,np.log(y_hat).shape
((100, 3), (100,), (100, 1))

现在,我们需要编写代价函数来评估结果。
代价函数:
J ( w ) = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( h ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h ( x ( i ) ) ) ) J\left(w\right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{({{y}^{(i)}}\log \left( {h}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h}\left( {{x}^{(i)}} \right) \right))} J(w)=m1i=1m(y(i)log(h(x(i)))+(1y(i))log(1h(x(i))))

#代价函数构造
def cost(X,w,y):#当X(m,n+1),y(m,),w(n+1,1)y_hat=h(X,w)right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())cost=-np.sum(right)/X.shape[0]return cost
#设置初始的权值
w=np.zeros((X.shape[1],1))
#查看初始的代价
cost(X,w,y)
0.6931471805599453

看起来不错,接下来,我们需要一个函数来计算我们的训练数据、标签和一些参数 w w w的梯度。

1.4 定义梯度下降算法

gradient descent(梯度下降)

  • 这是批量梯度下降(batch gradient descent)
  • 转化为向量化计算: 1 m X T ( S i g m o i d ( X W ) − y ) \frac{1}{m} X^T( Sigmoid(XW) - y ) m1XT(Sigmoid(XW)y)
    ∂ J ( w ) ∂ w j = 1 m ∑ i = 1 m ( h ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( w \right)}{\partial {{w }_{j}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} wjJ(w)=m1i=1m(h(x(i))y(i))xj(i)
h(X,w).shape
(100, 1)
def grandient(X,y,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))return w,cost_lst

此处进行的调整为:采用train_x, train_y进行训练

train_x.shape,train_y.shape
((80, 3), (20, 3))
iter_num,alpha=100000,0.001
w,cost_lst=grandient(X_train, y_train,iter_num,alpha)
cost_lst[iter_num-1]
0.38273008292061245
plt.plot(range(iter_num),cost_lst,"b-o")
[<matplotlib.lines.Line2D at 0x1d0f1417d30>]

1

Xw—X(m,n) w (n,1)

w
array([[-4.86722837],[ 0.04073083],[ 0.04257751]])

1.5 绘制决策边界

高维数据的决策边界无法可视化

1.6 计算准确率

此处进行的调整为:采用X_test和y_test来测试进行训练

如何用我们所学的参数w来为数据集X输出预测,来给我们的分类器的训练精度打分。
逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T X {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}X}}} h(x)=1+ewTX1
h {{h}} h大于等于0.5时,预测 y=1

h {{h}} h小于0.5时,预测 y=0 。

#在训练集上的准确率
y_train_true=np.array([1 if item>0.5 else 0 for item in h(X_train,w).ravel()])
y_train_true
array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0])
#训练集上的误差
np.sum(y_train_true==y_train)/X_train.shape[0]
0.9125
#在测试集上的准确率
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
array([1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1])
y_test
array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],dtype=int64)
np.sum(y_p_true==y_test)/X_test.shape[0]
0.95

1.7 试试用Sklearn来解决

此处进行的调整为:采用X_train和y_train进行训练

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression()
#在训练集上的准确率为
clf.score(X_train,y_train)
0.9125

此处进行的调整为:采用X_test和y_test进行训练

#在测试集上却只有0.8
clf.score(X_test,y_test)
0.8

1.8 如何选择超参数?比如多少轮迭代次数好?

#1 利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1Exam2Admitted
034.62366078.0246930
130.28671143.8949980
235.84740972.9021980
360.18259986.3085521
479.03273675.3443761
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X=X.values
y=y.values
# 1 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=1)
X_train.shape,X_test.shape,X_val.shape 
((64, 3), (20, 3), (16, 3))
y_train.shape,y_test.shape,y_val.shape 
((64,), (20,), (16,))
# 2 修改梯度下降算法,为了不改变原有函数的签名,将训练集传给X,y
def grandient(X,y,X_val,y_val,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]cost_val=[]lst_w=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))cost_val.append(cost(X_val,w,y_val.ravel()))lst_w.append(w)return lst_w,cost_lst,cost_val
#调用梯度下降算法
iter_num,alpha=6000000,0.001
lst_w,cost_lst,cost_val=grandient(X_train,y_train,X_val,y_val,iter_num,alpha)
plt.plot(range(iter_num),cost_lst,"b-+")
plt.plot(range(iter_num),cost_val,"r-^")
plt.legend(["train","validate"])
plt.show()

2

#分析结果,看看在300万轮时的情况
print(cost_lst[500000],cost_val[500000])
0.24994786329203897 0.18926411883434127
#看看5万轮时测试误差
k=50000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.45636730725628694 0.45732791872411350.7
#看看8万轮时测试误差
k=80000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.40603054170171965 0.394247838217765160.75
#看看10万轮时测试误差
k=100000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.381898564816469 0.363559834652638970.8
#分析结果,看看在300万轮时的情况
k=3000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19780791870188535 0.114326801305738750.85
#分析结果,看看在500万轮时的情况
k=5000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19393055410160026 0.107541811991899470.85
#在500轮时的情况
k=5999999print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19319692059853838 0.106027626172624680.85

1.9 如何选择超参数?比如学习率设置多少好?

#1 设置一组学习率的初始值,然后绘制出在每个点初的验证误差,选择具有最小验证误差的学习率
alpha_lst=[0.1,0.08,0.03,0.01,0.008,0.003,0.001,0.0008,0.0003,0.00001]
def grandient(X,y,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))return w,cost_lst

lst_val=[]
iter_num=100000
lst_w=[]
for alpha in alpha_lst:w,cost_lst=grandient(X_train,y_train,iter_num,alpha)lst_w.append(w)lst_val.append(cost(X_val,w,y_val.ravel()))
lst_val
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: divide by zero encountered in logright=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: invalid value encountered in multiplyright=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())[nan,nan,nan,1.302365681883988,0.9807991089640924,0.6863333276415668,0.3635612014705094,0.3942497801600069,0.5169328809489743,0.6448319202310255]
np.array(lst_val)
array([       nan,        nan,        nan, 1.30236568, 0.98079911,0.68633333, 0.3635612 , 0.39424978, 0.51693288, 0.64483192])
lst_val[3:]
[1.302365681883988,0.9807991089640924,0.6863333276415668,0.3635612014705094,0.3942497801600069,0.5169328809489743,0.6448319202310255]
np.argmin(np.array(lst_val[3:]))
3
#最好的学习率为
alpha_best=alpha_lst[3+np.argmin(np.array(lst_val[3:]))]
alpha_best
0.001
#可视化各学习率对应的验证误差
plt.scatter(alpha_lst[3:],lst_val[3:])
<matplotlib.collections.PathCollection at 0x1d1d48738b0>

3

#看看测试集的结果
#取出最好学习率对应的w
w_best=lst_w[3+np.argmin(np.array(lst_val[3:]))]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.72412058][ 0.0504264 ][ 0.0332232 ]]0.8
#查看其他学习率对应的测试集准确率
for w in lst_w[3:]:y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])print(np.sum(y_p_true==y_test)/X_test.shape[0])
0.75
0.75
0.6
0.8
0.75
0.6
0.55

1.10 如何选择超参数?试试调整l2正则化因子

实验4(2) 完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

# 1正则化的因子的范围可以比学习率略微设置的大一些
lambda_lst=[0.001,0.003,0.008,0.01,0.03,0.08,0.1,0.3,0.8,1,3,10]
# 2 代价函数构造
def cost_reg(X,w,y,lambd):#当X(m,n+1),y(m,),w(n+1,1)y_hat=sigmoid(X@w)right1=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())right2=(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))cost=-np.sum(right1)/X.shape[0]+right2return cost
def grandient_reg(X,w,y,iter_num,alpha,lambd):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[] for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(0,X.shape[1]):if j==0:right_0=np.multiply(y_pred.ravel(),X[:,j])gradient_0=1/(X.shape[0])*(np.sum(right_0))temp[j,0]=w[j,0]-alpha*(gradient_0)else:right=np.multiply(y_pred.ravel(),X[:,j])reg=(lambd/X.shape[0])*w[j,0]gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*(gradient+reg)          w=tempcost_lst.append(cost_reg(X,w,y,lambd))return w,cost_lst
# 3 调用梯度下降算法用l2正则化
iter_num,alpha=100000,0.001
cost_val=[]
cost_w=[]
for lambd in lambda_lst:w,cost_lst=grandient_reg(X_train,w,y_train,iter_num,alpha,lambd)cost_w.append(w)cost_val.append(cost_reg(X_val,w,y_val,lambd))
cost_val
[0.36356132605416125,0.36356157522133403,0.3635621981384864,0.36356244730503007,0.36356493896065706,0.3635711680214138,0.36357365961439897,0.3635985745598491,0.3636608540941533,0.36368576277656284,0.36393475122711266,0.36480480418120226]
# 4 查找具有最小验证误差的索引,从而求解出最优的lambda值
idex=np.argmin(np.array(cost_val))
print("具有最小验证误差的索引为{}".format(idex))
lamba_best=lambda_lst[idex]
lamba_best
具有最小验证误差的索引为00.001
# 5 计算最好的lambda对应的测试结果
w_best=cost_w[idex]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.7241201 ][ 0.05042639][ 0.0332232 ]]0.8

相关文章:

【Python机器学习】实验04(2) 机器学习应用实践--手动调参

文章目录 机器学习应用实践1.1 准备数据此处进行的调整为&#xff1a;要所有数据进行拆分 1.2 定义假设函数Sigmoid 函数 1.3 定义代价函数1.4 定义梯度下降算法gradient descent(梯度下降) 此处进行的调整为&#xff1a;采用train_x, train_y进行训练 1.5 绘制决策边界1.6 计算…...

【爬虫案例】用Python爬取iPhone14的电商平台评论

用python爬取某电商网站的iPhone14评论数据&#xff0c; 爬取目标&#xff1a; 核心代码如下&#xff1a; 爬取到的5分好评&#xff1a; 爬取到的3分中评&#xff1a; 爬取到的1分差评&#xff1a; 所以说&#xff0c;用python开发爬虫真的很方面&#xff01; 您好&…...

01)docker学习 centos7离线安装docker

docker学习 centos7离线安装docker 在实操前可以先看下docker教程,https://www.runoob.com/docker/docker-tutorial.html , 不过教程上都是在线安装方式,很方便,离线安装肯定比如在线麻烦点。 一、什么是Docker 在学习docker时,在网上看到一篇博文讲得很好,自己总结一下…...

前端 - 实习两个星期总结

文章目录 吐槽总结新人建议项目学习到的 今天已经是菜鸟实习的第二个星期了&#xff0c;怎么说呢&#xff0c;反正就是进的一个不大不小的厂&#xff0c;做着不难不易的事&#xff0c;菜鸟现在主要做的就是适配&#xff01;现在就来总结一下&#xff0c;不过这之前&#xff0c;…...

MySQL——主从复制

1.理解MySQL主从复制原理。 2.完成MySQL主从复制。 1.理解MySQL主从复制原理。 1&#xff09;、MySQL支持的复制类型 &#xff08;1&#xff09;、基于语句&#xff08; statement &#xff09;的复制 在主服务器上执行SQL 语句&#xff0c;在从服务器上执行同样的语句。 My…...

报表下载工具

1.需求说明 我有一堆文件的Url地址&#xff0c; 现在需要按照企业&#xff0c;项目和报表类型分类下载到对应的文件夹中 2.相关实体类 企业文件夹定义 package com.vz.utils.report;import lombok.Data; import java.util.ArrayList; import java.util.List; import java.uti…...

树及其遍历

文章目录 树树定义专业术语树分类 二叉树分类存储连续存储&#xff08;完全二叉树&#xff09;链式存储一般树的存储森林的存储 线索二叉树哈夫曼树构造步骤 遍历先序遍历中序遍历后续遍历 链式二叉树遍历具体代码已知两种遍历序列求原始二叉树已知先序和中序求后序已知中序和后…...

Qt报错解决办法

anaconda环境安装qt报错解决办法 报错&#xff1a;thresholdGap: 20 pointsShape: 164142 qt.qpa.plugin: Could not find the Qt platform plugin “wayland” in “/home/tianhailong/anaconda3/envs/edge_algorithm/lib/python3.8/site-packages/cv2/qt/plugins” This app…...

Python(四十七)列表对象的创建

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…...

#systemverilog# 说说Systemverilog中《automatic》那些事儿

前面我们学习了有关systemverilog语言中有关《static》的一些知识,同static 关系比较好的哥们,那就是 《automatic》。今天,我们了解认识一下。 在systemveriog中,存在三种并发执行语句,分别是fork..join,fork...join_any和fork..join_none,其中只有fork...join_none不…...

C/C++ 动态内存分配与它的指针变量

一、什么是内存的动态分配 全局变量分配在内存中的静态存储区。局部变量&#xff08;包括形参&#xff09;分配在内存中的动态存储区&#xff0c;这个存储区是一个称为栈的区域。除此之外&#xff0c;C语言还允许建立内存动态分配区域&#xff0c;以存放一些临时用的数据&…...

UE5初学者快速入门教程

虚幻引擎是一系列游戏开发工具&#xff0c;能够将 2D 手机游戏制作为 AAA 游戏机游戏。虚幻引擎 5 用于开发下一代游戏&#xff0c;包括Senuas Saga: Hellblade 2、Redfall&#xff08;来自 Arkane Austin 的合作射击游戏&#xff09;、Dragon Quest XII: The Flames of Fate、…...

论文笔记--FEDERATED LEARNING: STRATEGIES FOR IMPROVING COMMUNICATION EFFICIENCY

论文笔记--FEDERATED LEARNING: STRATEGIES FOR IMPROVING COMMUNICATION EFFICIENCY 1. 文章简介2. 文章概括3 文章重点技术3.1 联邦学习(federated learning, FL)3.2 Structured updates3.3 Sketched Update 4. 文章亮点5. 原文传送门 1. 文章简介 标题&#xff1a;FEDERATE…...

STM32MP157驱动开发——按键驱动(异步通知)

文章目录 “异步通知 ”机制&#xff1a;信号的宏定义&#xff1a;信号注册 APP执行过程驱动编程做的事应用编程做的事异步通知方式的按键驱动程序(stm32mp157)button_test.cgpio_key_drv.cMakefile修改设备树文件编译测试 “异步通知 ”机制&#xff1a; 信号的宏定义&#x…...

医疗器械维修工程师心得

彩虹医械维修技能班9月将开展本年第三期长期班&#xff0c;目前咨询人员也陆续多了起来&#xff0c;很多刚了解到医疗行业的&#xff0c;自身也没有多少相关的基础&#xff0c;在咨询时会问到没有基础能否学的会&#xff1f; 做了这行业的都知道&#xff0c;无论多么复杂的设备…...

Vue3 Radio单选切换展示不同内容

Vue3 Radio单选框切换展示不同内容 环境&#xff1a;vue3tsviteelement plus 技巧&#xff1a;v-if&#xff0c;v-show的使用 实现功能&#xff1a;点击单选框展示不同的输入框 效果实现前的代码&#xff1a; <template><div class"home"><el-row …...

FreeRTOS之二值信号量

什么是信号量&#xff1f; 信号量&#xff08;Semaphore&#xff09;&#xff0c;是在多任务环境下使用的一种机制&#xff0c;是可以用来保证两个或多个关键代 码段不被并发调用。 信号量这个名字&#xff0c;我们可以把它拆分来看&#xff0c;信号可以起到通知信号的作用&am…...

ChatGPT API进阶调用指南

原文&#xff1a;ChatGPT API进阶调用指南 ChatGPT API 进阶调用指南 ChatGPT API 是基于 OpenAI 的 GPT模型的一个强大工具&#xff0c;可以用于构建各种对话式应用。以下是一些使用 Markdown 语法的进阶调用指南&#xff0c;以帮助您更好地利用 ChatGPT API。 设置用户角色…...

人工智能术语翻译(四)

文章目录 摘要MNOP 摘要 人工智能术语翻译第四部分&#xff0c;包括I、J、K、L开头的词汇&#xff01; M 英文术语中文翻译常用缩写备注Machine Learning Model机器学习模型Machine Learning机器学习ML机器学习Machine Translation机器翻译MTMacro Average宏平均Macro-F1宏…...

kubernetes持久化存储卷

kubernetes持久化存储卷 kubernetes持久化存储卷一、存储卷介绍二、存储卷的分类三、存储卷的选择四、本地存储卷之emptyDir五、本地存储卷之 hostPath六、网络存储卷之nfs七、PV(持久存储卷)与PVC(持久存储卷声明)7.1 认识pv与pvc7.2 pv与pvc之间的关系7.3 实现nfs类型pv与pvc…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...