当前位置: 首页 > news >正文

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型


版本更新:

2023/7/29版本:
1.增加自定义参数,方便直接套数据运行。

pre_num=3;%预采样数据个数
learn_pr=0.85;  %训练数据比例(不包括预采样数据)
mm=pre_num;%输入响应数据个数    
nn=pre_num;%输出响应数据个数   

2.增加ARIMAX模型参数自动选择功能
(1)可手动选择ADF或者KPSS平稳性检验方式
存在不足:目前无法解决D>0的问题,所以优先选择D=0的检验方法,本文选用KPSS检验
[p, d, q ] = fit_model( Y,learn_num, test_num );
(2)检验p、d、q是否满足后续正常运行条件

if pre_num>=p+ddisp('--------------------------------------------');fprintf('ARIMAX(%d, %d, %d)满足运行要求', p, d, q);
elsedisp('--------------------------------------------');fprintf('ARIMAX(%d, %d, %d)不满足运行要求,', p, d, q);disp('请增大pre_num预采样数值');
end

3.增加参数评估结果(命令行窗口展示)

最优模型参数为:ARIMAX (2, 0, 0)
ARIMAX(2,0,0) Model (Gaussian Distribution)Effective Sample Size: 53Number of Estimated Parameters: 7LogLikelihood: -164.451AIC: 342.901BIC: 356.693Value     StandardError    TStatistic    PValue______    _____________    __________    ______Constant    -25.21        10.11          -2.49        0.01 AR{1}         0.30         0.08           3.63        0.00 AR{2}        -0.06         0.06          -1.01        0.31 Beta(1)       3.24         0.32          10.27        0.00 Beta(2)       0.00         0.00           3.21        0.00 Beta(3)       1.92         0.58           3.31        0.00 Variance     29.01         7.63           3.81        0.00 

4.增加置信区间绘图及评价(默认95%,可自行调整)
在这里插入图片描述

picp2 = PICP (ci, Y(end-test_num+1:end));
pimw2 = PIMWP(ci, Y(end-test_num+1:end));
disp(['测试集的区间覆盖率为:', num2str(picp2), '。区间平均宽度百分比为:', num2str(pimw2)])
测试集的区间覆盖率为:1。区间平均宽度百分比为:3.212

版本不足:

1.未解决D>0的问题,即只能处理通过检验方法判定的平稳的时间序列数据。
2.p、q筛选区间最大值目前只能为2,且缺少d结果的选择(d通过平稳性检验提前确定)。



一、简要介绍

  1. ARMAX模型相比ARMA考虑了影响因素 ,即可以实现基于时间序列数据的回归预测。
  2. 目前,ARMAX预测未来功能存在困难,本篇文章不予介绍。大致思路需要通过时间滞后构造数据,使前时间段的X预测后时间段的Y,即多步预测。
  3. 此示例展示如何将时间序列中的时间划分为预采样期T0、训练期Ty和预测期Tf,并显示了如何提供适当数量的观测值来初始化用于估计和预测的动态模型。
  4. 通过定义ARMA模型中的参数,可实现ARIMAX和SARIMAX模型。本文介绍最基础的ARMAX模型。
    在这里插入图片描述

二、导入数据

  1. 本篇文章案例数据采用3输入1输出,62个样本(1962-2023年)。
  2. 本文用table格式打开,方便对时间进行处理。
clear all
data=readtable('数据集.xlsx');
DataTable = table2timetable(data);%将DataTable转换为时间表。
varnames = ["Y" "X1" "X2" "X3" ];
Tbl = rmmissing(DataTable(:,varnames));%通过应用列表删除从数据中删除所有前导NaN。
T = size(Tbl,1) %总样本量
Y = Tbl.Y; %因变量
X = Tbl{:,varnames(2:end)};%变量

在这里插入图片描述

三、建立模型

为了训练和预测模型,估计必须有足够的预采样数据来初始化自回归项,同样,要从训练模型中预测,预测必须有足够的预采样样本。
此外,预测期中的回归分量需要预测历史数据或未来的预测数据Y,那么需要有与之对应的X,不然无法预测未来。

  1. 本文考虑一个ARMAX(1,2)模型,该模型以X1、X2、X3为外生变量,预测Y。
  2. 将样本的时间线划分为预采样、训练和预测时段。将模型拟合到训练样本,并使用预采样数据来初始化自回归项。然后,根据训练模型对Y进行预测。
  3. 指定预采样数据,以初始化自回归项。一般预采样数据个数为Mdl.P,因为p在之前就设置好了,所以手动设置为1。 -
  4. 指定训练数据,选择2-56作为训练数据。输入数据XEst则为X2-X56,输出为Y2-Y56
  5. 指定预测数据,57-62共6个数据进行测试。输入数据则为X57-X62,输出为Y57-Y62
idxpresample = 1;%预采样数据y0es个数,1
idxestimate = 2:56;%训练数据yest 个数,55
idxforecast = 57:T;%预测数据个数 ,6
  1. 建立ARMAX(1,2)模型
Mdl = arima(1,0,2); % P D Q
%ARIMAX(1,0,2) Model (Gaussian Distribution)
Effective Sample Size: 55
Number of Estimated Parameters: 8
LogLikelihood: -162.152
AIC: 340.303
BIC: 356.362Value     StandardError    TStatistic    PValue______    _____________    __________    ______Constant    -28.86        12.92          -2.23        0.03 
AR{1}         0.20         0.05           4.02        0.00 
MA{1}         0.65         0.16           4.19        0.00 
MA{2}         0.05         0.18           0.31        0.76 
Beta(1)       3.42         0.28          12.37        0.00 
Beta(2)       0.00         0.00           3.19        0.00 
Beta(3)       1.96         0.76           2.57        0.01 
Variance     21.30         5.16           4.13        0.00 
  1. 在训练样本结束时指定必要的观测值作为样本前数据进行预测,需指定训练期的数据,且数据个数至少为1,本文取两个,即训练输入的最后2个值X55-X56和训练输出的最后2个值Y55-Y56。
  2. 预测数据,假设预测的数量为M,则M必须小于等于XF的个数,不然无法运行。本文指定M=6,预测期的输入变量XF为X57-X62。
 [yf,ymse] = forecast(Mdl,M);
  1. 置信区间预测
ci = yf + 1.96*[-sqrt(ymse) sqrt(ymse)];
  1. 绘图。因年份较多,故只展示后面一半的数据。
yrs = year(Tbl.Time(round(T/2):end));%绘制后半部分的响应数据和预测。figure;
plot(yrs,Tbl.Y(round(T/2):end),"b","LineWidth",2);
hold on
plot(yrs(end-size(idxforecast,2)+1:end),yf,"r--","LineWidth",2);
h = gca;
px = yrs([end - size(idxforecast,2)+1 end end end - size(idxforecast,2)+1]);
py = h.YLim([1 1 2 2]);
hp = patch(px,py,[0.9 0.9 0.9]);
uistack(hp,"bottom");
axis tight
title("ARMAX模型");
legend(["预测区段" "实际值" "预测值"])

四、效果展示

在这里插入图片描述

五、代码获取

后台私信回复“60期”即可获取下载方式。

相关文章:

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型 版本更新: 2023/7/29版本: 1.增加自定义参数,方便直接套数据运行。 pre_num3;%预采样数据个数 learn_pr0.85; %训练数据比例(不包括预采样数…...

Vue 常用指令 v-on 自定义参数,事件修饰符

自定义参数就是可以在触发事件的时候传入自定义的值。 文本框,绑定了一个按钮事件,对应的逻辑是sayhi,现在无论按下什么按钮都会触发这个sayhi。但是实际上不是所有的按钮都会触发,只会限定某一些按钮,最常见的按钮就…...

重要通知|关于JumpServer开源堡垒机V2版本产品生命周期的相关说明

JumpServer(https://github.com/jumpserver)开源项目创立于2014年6月,已经走过了九年的发展历程。经过长期的产品迭代,JumpServer已经成为广受欢迎的开源堡垒机。 JumpServer堡垒机遵循GPL v3开源许可协议,是符合4A&a…...

下载快 kaggle output

下载快 kaggle output 文档:下载快 kaggle output.note 链接:http://note.youdao.com/noteshare?id0e89033f5675252add0a39ee97b6f060&sub63D673D0AD224FC581CC30627B4E2ED8 添加链接描述 但是 数据集下载慢 input 里面下载数据集 也是慢的 数据集…...

结构型设计模式-1.代理设计模式

结构型设计模式-1.代理设计模式 结构型设计模式:利用类与类之间的关系(继承、组合),形成一种类与类之间的结构,通过这种结构提高代码的可拓展性、可维护性和可重用性。 一、简介 代理设计模式(Proxy Des…...

Python(四十九)获取列表指定元素的索引

❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…...

年轻人的第一套海景房

前段时间新房装修,我把书房设计成工作室的风格,并自己装配了一台电脑,本文是对电脑选购与装配的一则经验贴,仅包含我对计算机硬件的浅薄理解。 配件选购 装机契源 事实上,很多电脑店都提供装配和测试服务&#xff0c…...

Vue输入内容/链接生成二维码

方式一&#xff1a;qrcode&#xff08;无 icon 图标&#xff09; npm i qrcodejs2 --save完整代码 <template><div class"flex-box"><div>qrcode&#xff08;无 icon 图标&#xff09;</div><div class"qr-code" ref"qrCo…...

使用langchain与你自己的数据对话(二):向量存储与嵌入

之前我以前完成了“使用langchain与你自己的数据对话(一)&#xff1a;文档加载与切割”这篇博客&#xff0c;没有阅读的朋友可以先阅读一下&#xff0c;今天我们来继续讲解deepleaning.AI的在线课程“LangChain: Chat with Your Data”的第三门课&#xff1a;向量存储与嵌入。 …...

No105.精选前端面试题,享受每天的挑战和学习

文章目录 手写new手写Mapget和post区别发起post请求的时候&#xff0c;服务端是怎么解析你的body的&#xff08;content-type&#xff09;&#xff0c;常见的content-type都有哪些&#xff0c;发文件是怎么解析的&#xff08;FormData&#xff09;&#xff0c;如果多个文件&…...

【计算机网络】第 3 课 - 计算机网络体系结构

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、常见的计算机网络体系结构 2、计算机网络体系结构分层的必要性 2.1、物理层 2.2、数据链路层 2.3、网路层 2.4、运输层 2…...

精细呵护:如何维护自己的电脑,提升性能和寿命

导语&#xff1a; 在当今数字化时代&#xff0c;电脑已经成为我们日常生活和工作的必需品。然而&#xff0c;就像任何其他设备一样&#xff0c;电脑需要得到适当的维护和保养&#xff0c;以保持良好的性能和延长使用寿命。在本文中&#xff0c;我们将分享一些简单而有效的方法&…...

DevOps-Jenkins

Jenkins Jenkins是一个可扩展的持续集成引擎&#xff0c;是一个开源软件项目&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 官网 应用场景 场景一 研发人员上传开发好的代码到github代码仓库需要将代码下载nginx服务器部署手动下载再…...

Jasper裁员,成也GPT,败也GPT

大家好&#xff01; 我是老洪。 今天来聊一聊人工智能(artificial intelligence)&#xff0c;简称AI。 当前的AI可谓是热火朝天&#xff0c; 自从ChatGPT发布以来&#xff0c;引起了广泛的关注和热情&#xff0c; 许多公司和研究者都试图将其应用于自己的产品或研究中。 按理说…...

安卓开发后台应用周期循环获取位置信息上报服务器

问题背景 最近有需求&#xff0c;在APP启动后&#xff0c;退到后台&#xff0c;还要能实现周期获取位置信息上报服务器&#xff0c;研究了一下实现方案。 问题分析 一、APP退到后台后网络请求实现 APP退到后台后&#xff0c;实现周期循环发送网络请求。目前尝试了两种方案是…...

为什么你的独立站有流量没转化?如何做诊断检查?

新店的创业初期&#xff0c;即使网站有流量&#xff0c;但是销售额为零的情况也常有发生。如果你确定流量是高质量的&#xff0c;寻找阻止潜在客户购买的具体因素可能会感到困难重重。 从“立即购买”按钮的色彩选择这样的细节&#xff0c;到构建品牌故事这样的大计划&#xf…...

【深度学习】【三维重建】windows10环境配置PyTorch3d详细教程

【深度学习】【三维重建】windows10环境配置PyTorch3d详细教程 文章目录 【深度学习】【三维重建】windows10环境配置PyTorch3d详细教程前言确定版本对应关系源码编译安装Pytorch3d总结 前言 本人windows10下使用【Code for Neural Reflectance Surfaces (NeRS)】算法时需要搭…...

【算法和数据结构】257、LeetCode二叉树的所有路径

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先看这道题的输出结果&#xff0c;是前序遍历。然后需要找到从根节点到叶子节点的所有路径&#xff…...

yolov5的后处理解析

由于最近实习项目使用到了yolov5&#xff0c; 发现对yolov5的后处理部分不太熟悉&#xff0c;为防止忘记&#xff0c;这里简单做个记录。 在yolov5里&#xff0c;利用FPN特征金字塔&#xff0c;可以得到三个加强特征层&#xff0c;每一个特征层上每一个特征点存在3个先验框&am…...

Java中注解应用场景

1.Parameter注解 Parameter(names "-browser", description "browser name, supported scope [chrome]", required true) Param注解的用法解析_parameter_fFee-ops的博客-CSDN博客 Public User selectUser(param(“userName”) String name, param(“…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...