当前位置: 首页 > article >正文

在PyTorch中使用GPU加速:从基础操作到模型部署

本文将通过具体代码示例,详细介绍如何在PyTorch中利用GPU进行张量计算和模型训练,包含设备查询、数据迁移以及模型部署等完整流程。


1. 查看GPU硬件信息

使用 nvidia-smi 命令检查GPU状态和进程信息:

# 查看GPU信息
!nvidia-smi

输出示例
显示当前GPU型号(如NVIDIA GeForce RTX 3060)、显存使用情况和运行中的进程。


2. 计算设备管理

2.1 定义设备对象

import torch
from torch import nn# 定义不同设备对象
device_cpu = torch.device('cpu')
device_gpu0 = torch.cuda.device('cuda')
device_gpu1 = torch.cuda.device('cuda:1')
device_cpu, device_gpu0, device_gpu1

输出

(device(type='cpu'), <torch.cuda.device at 0x...>, <torch.cuda.device at 0x...>)

2.2 查询可用GPU数量

torch.cuda.device_count()  # 返回可用GPU数量

输出1(表示系统中有1块可用GPU)

3. 灵活选择设备

3.1 按需选择GPU或CPU

def try_gpu(i=0):"""选择指定GPU,若不可用则返回CPU"""if torch.cuda.device_count() >= i + 1:return torch.device(f'cuda:{i}')return torch.device('cpu')def try_all_gpu():"""返回所有可用GPU,若无则返回CPU"""devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]return devices if devices else [torch.device('cpu')]try_gpu(), try_gpu(10), try_all_gpu()

 输出

(device(type='cuda', index=0), device(type='cpu'), [device(type='cuda', index=0)])

4. 张量与GPU操作

4.1 默认设备查询

x = torch.tensor([1, 2, 3])
x.device  # 默认在CPU上

输出device(type='cpu')

4.2 显存中创建张量

x_gpu = torch.ones(2, 3, device='cuda:0')  # 在GPU 0上创建全1张量
x_gpu

输出

tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:0')

4.3 GPU间计算

y_gpu = torch.rand(2, 3, device='cuda:0')
x_gpu + y_gpu  # 必须同一设备才能计算

输出示例

tensor([[1.4571, 1.4172, 1.1364],[1.7572, 1.3977, 1.2402]], device='cuda:0')

5. 神经网络模型部署到GPU

5.1 模型迁移

# 定义一个简单神经网络
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device='cuda')  # 将模型参数移至GPU# 输入数据需与模型在同一设备
output = net(x_gpu)
output

输出示例

tensor([[-0.4271],[-0.4271]], device='cuda:0', grad_fn=<AddmmBackward0>)

5.2 验证参数位置

net[0].weight.data.device  # 检查参数存储位置

输出device(type='cuda', index=0)

6. 关键注意事项

  1. 设备一致性:输入数据和模型必须在同一设备(CPU/GPU)上才能进行计算。

  2. 显存管理:及时释放不再使用的GPU张量(del tensor + torch.cuda.empty_cache())。

  3. 多GPU支持:可通过torch.nn.DataParallel实现多卡并行训练。


总结

本文演示了PyTorch中GPU加速的核心操作,包括设备选择、张量迁移和模型部署。合理利用GPU可显著加速深度学习任务,建议在训练大型模型时优先使用GPU环境。如果遇到CUDA相关错误,请检查驱动版本和PyTorch的GPU支持安装。

相关文章:

在PyTorch中使用GPU加速:从基础操作到模型部署

本文将通过具体代码示例&#xff0c;详细介绍如何在PyTorch中利用GPU进行张量计算和模型训练&#xff0c;包含设备查询、数据迁移以及模型部署等完整流程。 1. 查看GPU硬件信息 使用 nvidia-smi 命令检查GPU状态和进程信息&#xff1a; # 查看GPU信息 !nvidia-smi 输出示例&…...

机器学习ML极简指南

机器学习是现代AI的核心&#xff0c;从推荐系统到自动驾驶&#xff0c;无处不在。但每个智能应用背后&#xff0c;都离不开那些奠基性的模型。本文用最简练的方式拆解核心机器学习模型&#xff0c;助你面试时对答如流&#xff0c;稳如老G。 线性回归 线性回归试图通过"最…...

flux绘画模型介绍

一、Flux绘画模型的核心定义与背景 Flux绘画模型是由Black Forest Labs开发的先进AI图像生成模型&#xff0c;其核心团队源自Stable Diffusion的创始成员&#xff08;如Robin Rombach&#xff09;&#xff0c;结合了Stability AI的技术积累与创新突破。该模型于2024年8月首次发…...

LLM驱动的智能体:基于GPT的对话智能体开发指南

前言 大语言模型&#xff08;LLM, Large Language Model&#xff09;正在彻底改变智能体&#xff08;Agent&#xff09;的设计和实现方式。从简单的聊天机器人到复杂的自动化助手&#xff0c;基于GPT等LLM的对话智能体已经在客服、教育、办公自动化、编程助手等领域得到了广泛…...

项目之Boost搜索引擎

目录 搜索引擎项目背景 搜索引擎的宏观原理 搜索引擎技术栈和项目环境 搜索引擎具体原理(正排索引和倒排索引) 正排索引 倒排索引 编写数据去标签与数据清洗的模块 Parser 从boost官网导入HTML网页数据 去标签 构建 Parser 模块 递归式获取 HTML 文件的带文件名称…...

MyBatis 动态SQL 详解!

目录 一、 什么是动态 SQL&#xff1f;二、 为什么需要动态 SQL&#xff1f;三、 MyBatis 动态 SQL 标签四、 标签详解及示例1、 if 标签2、 choose、when、otherwise 标签3、 where 标签4、 set 标签5、 foreach 标签6、 sql、include 标签 五、 总结 &#x1f31f;我的其他文…...

本节课课堂总结

匿名子类&#xff1a; 说明 和 Java 一样&#xff0c;可以通过包含带有定义或重写的代码块的方式创建一个匿名的子类。 单例对象&#xff08;伴生对象&#xff09; Scala语言是完全面向对象的语言&#xff0c;所以并没有静态的操作&#xff08;即在Scala中没有静态的概念&a…...

【Linux学习笔记】开发工具git和gbd和cgbd的介绍和使用

【Linux学习笔记】开发工具git和gbd和cgbd的介绍和使用 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;Linux学习笔记 文章目录 【Linux学习笔记】开发工具git和gbd和cgbd的介绍和使用前言一. 版本控制器Git1.1版本控制器1.2 git 简史1.3 安…...

php的高速缓存

部署方法 在我们安装的nginx中默认不支持memc和srcache功能&#xff0c;需要借助第三方模块来让nginx支持此功能。 tar zxf srcache-nginx-module-0.33.tar.gz tar zxf memc-nginx-module-0.20.tar.gz 下载这俩个模块&#xff0c;然后编译安装的时候加进去 编译安装完成之后…...

Real-Time Anomaly Detection of Network Traffic Basedon CNN

1知识点补充 边缘计算模型 成为一种新的分布式数据处理方式&#xff0c;通过靠近数据侧&#xff0c;及时响应用户的计算请求&#xff0c;降低数据传输的网络延迟。 边缘节点是边缘计算架构中最基础的物理或逻辑单元&#xff0c;指位于网络边缘&#xff08;靠近数据源或用户&a…...

RHCSA LINUX系统文件管理

一.7种文件类型 注意&#xff1a;Linux系统文件名的后缀只是为了方便用户识别文件类型 Linux系统设计哲学&#xff1a;一切皆文件 1.使用 “ls -l” 命令查看到的第一个字符&#xff0c;对应不同文件类型及说明如下&#xff1a; ①“-”&#xff1a;普通文件&#xff0c;类…...

AQUA爱克泳池设备入驻济南校园,以品质筑牢游泳教育安全防线

在推进校园体育教育高质量发展的时代背景下&#xff0c;游泳作为一项兼具运动价值与生存技能的重要课程&#xff0c;正被越来越多的学校纳入教学体系。泳池作为开展游泳教学与运动的关键设施&#xff0c;其配套泳池设备的先进性与安全性愈发受到重视。作为泳池水处理设备行业的…...

基于CNN实现电力负荷多变量时序预测(PyTorch版)

前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记…...

网络空间安全(50)JavaScript基础语法

一、变量声明 ①var: 早期的变量声明方式&#xff0c;函数作用域。 ②let: 块级作用域&#xff0c;推荐在现代 JavaScript 中使用。 ③const: 块级作用域&#xff0c;用于声明常量&#xff0c;值不可变。 var name "Alice"; let age 30; const PI 3.14159; 二、数…...

深入理解二叉树、B树与B+树:原理、应用与实现

文章目录 引言一、二叉树&#xff1a;基础而强大的结构基本概念特性分析Java实现应用场景 二、B树&#xff1a;适合外存的多路平衡树基本概念关键特性查询流程示例Java简化实现典型应用 三、B树&#xff1a;数据库索引的首选核心改进优势分析范围查询示例Java简化实现实际应用 …...

【网络流 图论建模 最大权闭合子图】 [六省联考 2017] 寿司餐厅

题目描述&#xff1a; P3749 [六省联考 2017] 寿司餐厅 题目描述 Kiana 最近喜欢到一家非常美味的寿司餐厅用餐。 每天晚上&#xff0c;这家餐厅都会按顺序提供 n n n 种寿司&#xff0c;第 i i i 种寿司有一个代号 a i a_i ai​ 和美味度 d i , i d_{i, i} di,i​&…...

mysql对表,数据,索引的操作sql

对表的操作 新建表 创建一个名为rwh_test的表&#xff0c;id为主键自增 -- 新建表 CREATE TABLE rwh_test(id int NOT NULL auto_increment PRIMARY KEY COMMENT 主键id,username VARCHAR(20) DEFAULT NULL COMMENT 用户名,age int DEFAULT NULL COMMENT 年龄,create_date d…...

verl单机多卡与多机多卡使用经验总结

文章目录 I. 前言II. SFT2.1 单机多卡2.2 多机多卡 III. RL (GRPO)3.1 单机多卡3.2 多机多卡2.3 模型转换 I. 前言 在上一篇文章verl&#xff1a;一个集SFT与RL于一体的灵活大模型post-training框架 (快速入门) 中&#xff0c;初步探讨了verl框架的基础使用方法。在实际工业级…...

胶铁一体化产品介绍

•一体化结构特点介绍 胶框/铁框一体化技术最早在韩国采用&#xff0c;07年以来由于要求背光越做越薄。在采用0.4mm及以下厚度的LGP时&#xff0c;胶框及背光就会变得异常软,胶框不易组装&#xff0c;铁框松动等问题。 由于胶框和铁框是紧紧粘合在一起的&#xff0c;这正可以解…...

蓝桥杯刷题记录【并查集001】(2024)

主要内容&#xff1a;并查集 并查集 并查集的题目感觉大部分都是模板题&#xff0c;上板子&#xff01;&#xff01; class UnionFind:def __init__(self, n):self.pa list(range(n))self.size [1]*n self.cnt ndef find(self, x):if self.pa[x] ! x:self.pa[x] self.fi…...

基于BusyBox构建ISO镜像

1. 准备 CentOS 7.9 3.10.0-957.el7.x86_64VMware Workstation 建议&#xff1a;系统内核<3.10.0 使用busybox < 1.33.2版本 2. 安装busybox # 安装依赖 yum install syslinux xorriso kernel-devel kernel-headers glibc-static ncurses-devel -y# 下载 wget https://…...

Multisim14.3的安装步骤

Multisim14.3的安装步骤 安装包链接 右击Install.exe&#xff0c;以管理员身份运行 激活前关闭杀毒软件 右击&#xff0c;以管理员身份运行 依次右键【Base Edition】、【Full Edition】、【Power ProEdition】、【Full Edition】、【Power ProEdition】&#xff0c;选择【…...

搭建环境-opencv-qt

CMake Error at cmake/OpenCVCompilerOptimizations.cmake:647 (message): Compiler doesnt support baseline optimization flags: Call Stack (most recent call first): cmake/OpenCVCompilerOptions.cmake:344 (ocv_compiler_optimization_options) CMakeList 解决方…...

【愚公系列】《高效使用DeepSeek》050-外汇交易辅助

🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟 📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主! 👉 江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"…...

SparkAudio 是什么,和其他的同类 TTS 模型相比有什么优势

欢迎来到涛涛聊AI 在当今数字化时代&#xff0c;音频处理技术已经成为人们生活和工作中不可或缺的一部分。无论是制作有声读物、开发语音助手&#xff0c;还是进行影视配音&#xff0c;我们都离不开高效、精准的音频处理工具。然而&#xff0c;传统的音频处理技术往往存在诸多…...

jvm 的attach 和agent机制

Java 的 Attach 和 Agent 机制在实际应用中得到了广泛的成功应用&#xff0c;尤其是在监控、调试、性能分析、故障排查等方面。以下是这两种机制在实际场景中的一些成功应用案例&#xff1a; 1. 性能监控与分析 Java Agent 和 Attach 机制广泛应用于性能监控和分析&#xff0…...

Java 8 到 Java 21 系列之 Optional 类型:优雅地处理空值(Java 8)

Java 8 到 Java 21 系列之 Optional 类型&#xff1a;优雅地处理空值&#xff08;Java 8&#xff09; 系列目录 Java8 到 Java21 系列之 Lambda 表达式&#xff1a;函数式编程的开端&#xff08;Java 8&#xff09;Java 8 到 Java 21 系列之 Stream API&#xff1a;数据处理的…...

py文件打包为exe可执行文件,涉及mysql连接失败

py文件打包为exe可执行文件&#xff0c;涉及mysql连接失败 项目场景&#xff1a;使用flask框架封装算法接口&#xff0c;并使用pyinstaller打包为exe文件。使用pyinstaller打包多文件的场景&#xff0c;需要自己手动去.spec文件中添加其他文件&#xff0c;推荐使用auto-py-to-e…...

Ubuntu 系统 Docker 中搭建 CUDA cuDNN 开发环境

CUDA 是 NVIDIA 推出的并行计算平台和编程模型&#xff0c;利用 GPU 多核心架构加速计算任务&#xff0c;广泛应用于深度学习、科学计算等领域。cuDNN 是基于 CUDA 的深度神经网络加速库&#xff0c;为深度学习框架提供高效卷积、池化等操作的优化实现&#xff0c;提升模型训练…...

win10彻底让图标不显示在工具栏

关闭需要不显示的软件 打开 例此时我关闭了IDEA的显示 如果说只是隐藏&#xff0c;鼠标拖动一个道理 例QQ 如果说全部显示不隐藏...