网络原理 - 4(TCP - 1)
目录
TCP 协议
TCP 协议段格式
可靠传输
几个 TCP 协议中的机制
1. 确认应答
2. 超时重传
完!
TCP 协议
TCP 全称为 “传输控制协议”(Transmission Control Protocol),要对数据的传输进行一个详细的控制。
TCP 协议段格式

TCP 的报头对比于 UDP 的报头,就复杂很多了~~~
源端口号,目的端口号:和 UDP 还是一样的,表示数据是从那个进程来,到那个进程去。
32 位序号和 32 位确认序号,后面再详谈
4 位首部长度:首部长度也就是报头长度(header),不像 UDP 协议(报头固定是 8 个字节),TCP 报头中的前 20 个字节是固定长度的。后面这里包含了“选项(optional)”部分,选项部分可以有,也可以没有,可以有一个,也可以有多个。总的来说,表示了该 TCP 头部有多少个 32 位 bit(有多少个 4 字节),4 位首部长度,则说明 TCP 头部最大长度是 15(1111) * 4 = 60
保留位(reserved):在 UDP 协议中,长度受到 2 个字节的限制,想要进行扩展,发现无法扩展,一旦改变了报头长度,就会使得发送的 UDP 数据报和其他机器不兼容,无法通信。TCP 就提前做好了防备,设定报头的时候,提前准备了几个保留位(虽然不用,但先占个位置),后面一旦需要了,就把这些保留位给使用起来。
URG,ACK,PSH,PST,SYN,FIN:6 位标志位,是 TCP 协议中非常核心的部分,后面会详细展开
16 位窗口大小:后面再详谈
16 位校验和:类似于 UDP 的校验和一样。会把报头和数据载荷放在一起进行校验和。
16 位紧急指针:可以表示那部分数据是紧急数据。
TCP 内部的机制有非常多,上述报头的字段都是针对 TCP 中的各个机制的属性支撑,我们要详细了解 TCP 中的其他机制,才能更加深刻的认识到报头的含义。
可靠传输
前面我们提到 TCP 的特点:有连接,可靠传输,面向字节流,全双工。其中,TCP 中最核心,最重要的就是解决“可靠传输”的问题。
网络通信的过程是及其复杂的,无法确保发送方发出去的数据,100% 能够到达接收方。此处所提到的可靠性,只能“退而求其次”,只要尽可能的去进行发送,发送方能够知道对方是否收到,就认为是“可靠传输”了。
几个 TCP 协议中的机制
1. 确认应答
用来确保可靠性最核心的机制,称为“确认应答”。
举个栗子:A 和 B 进行交互~
A 向 B 发出消息说:“兄弟,晚上有事情吗,一起吃个饭”,B 回复:“好呀好呀”

但是当 A 再说出下面这句“借我5000块”,B 看到之后,心想,果然没按好心,会回复”滚呀滚呀“。

但是上面情况的时序,有些过于理想化了,实际上,网络传输过程中,经常会出现”后发先至”的情况。
网络通信中,为什么会出现“后发先至”的情况呢???
当一个数据报从发送方到接收方,其数据报会经历许多交换机 / 路由器,其传输过程中走的路径可能不一样,第一个数据包,可能走路线一,第二个数据包,走路线二...
有可能路线二畅通,路线一发生阻塞了,这就会导致,数据包二虽然后发,但是会先到达接收方。
我们上述的对话就可能变成这样:

如果出现后发先至的情况,再去理解这里的含义,就会出现问题了!!!
为了解决上述的问题,就引入了序号和确认序号,对数据进行编号,应答报文里面,就告诉发送发,我这次应答的是那个数据!

当然,我们上述的情况是一个简化版本的模型,真实的 TCP 协议的情况是更加复杂的。
TCP 是面向字节流的,以字节为单位进行传输的,没有“一条 两条”的概念。
实际上,TCP 的序号和确认序号都是以字节来进行编号的。
这就呼应到我们前面 TCP 协议中报头的 32 位序号了,在 TCP 的报头中的序号,只能存一个。
比如说有如下数据报:

即假设载荷有 1000 个字节,1000 个序号,由于序号是连续的,只需要在报头中保存第一个字节的序号 - 2001 即可,后续字节的序号都是很容易计算得到的~
而应答报文中的确认序号,是按照发送过去的最后一个字节的序号再加 1 来进行设定的~

确认应答 1001 的含义,有两种或理解方式:
1. 数据小于 1001 的数据,都已经收到了
2. 发送方接下来要给我(接收方)发 1001 开始的数据了
TCP 的确认应答是确保 TCP可靠性的最核心的机制!!!
(错误的说法:TCP 之所以能够保证可靠性,是因为“进行了“三次握手”)
在确认应答中,通过应答报文来反馈给发送方,表示当前的数据正确收到了。应答报文,也叫做 ACK(acknowledge) 报文。这个 ACK 是不是有些熟悉呢???就是我们刚刚在报头结构中的 6 位标记位中的一位~~~平时的普通报文,ACK 这位是 0,如果当前报文是应答报文,则此时这个报文的 ACK 位置就是 1。

2. 超时重传
超时重传这个机制,是对确认应答的补充。
如果一切顺利,通过应答报文,接收方就可以告诉发送方,当前数据是不是成功收到了,但是,网络上可能存在“丢包”的情况。如果数据包丢了,没有到达对端,对方自然也就没有 ACK 报文了。
这个情况下,就需要超时重传了!
TCP 可靠性就是在对抗丢包,期望做到,在丢包情况客观存在的时候,也能够尽可能的把包传过去!
大概流程如下:
发送方发了个数据过去之后,要等一段时间。在等待的这段时间中,收到了接收方发来的 ACK(数据报在网络上传输也是需要时间的)如果等了好久,ACK 还没有等到,此时发送方就会人数数据的传输出现丢包情况了,当认为丢包之后,就会把刚才的数据包再传一次(重传),等待的过程有一个时间上的阈值(上限),就是超时。
上面的流程中,是认为没收到 ACK 就是丢包,其实这样说是有些问题的。
丢包,不一定就是发的数据丢了,还有可能是,ACK 丢了。数据丢了,还是 ACK 丢了,在发送方的角度来看,咦,都是一样的呀,就是收不到接收方的 ACK

当我们是上面这种情况下,接收方本身就没收到数据,此时进行重传是理所应当的,没有任何问题~~~

但如果是上图这种情况呢???数据已经被 B 收到了,再传输一次,同一份数据,B 就会收到两次,试想一下,如果发送的请求是扣款请求呢???(扣两次款???用户一定会猛喷!!!)
其实不然~~~
TCP socket 在内核中,存在一个接收缓冲区(一块内存空间),发送方发来的数据,是要先放到接收缓冲区中的,然后应用程序调用 read / scanner.next 才能读取到数据,这里的读操作,其实是读取接收缓冲区中的数据。

当数据到达接收缓冲区的时候,接收方首先会判定一下,看当前缓冲区中,是否已经有这个数据了(也会判定,这个数据曾经是否在缓冲区中存在过),如果已经存在或者存在过,就直接把重发发来的数据就丢弃了~~就能确保应用程序,在调用 read / scanner.next 的时候,不会出现重复数据~~~
那接收方是如何判定这个数据是否是“重复数据”呢???
核心的判定依据,还是我们刚刚提到过的 -- 数据的序号!!!
1. 数据还在缓冲区里面,还没有被 read 走,此时,我们就要拿着新收到的数据的序号,和缓冲区中的数据的序号对一下,看看有没有一样的,有一样的,就是重复了,就可以把新收到的数据丢弃了。
2. 数据已经被应用程序给 read 走了,此时新来的数据的序号就无法直接在接收缓冲区中查到了。
但是!!!应用程序在读取数据的时候,是会按照序号的先后顺序,连续进行读取的!!!
先读 1 - 1000, 1001 - 2000, 2001 - 3000。
一定是先读序号小的数据,然后再读序号大的数据(可以把接收缓冲区理解为带有优先级的阻塞队列)。此时 socket API 中就可以记录上次读的最后一个字节的序号是多少。
比如上次读的最后一个字节的序号是 3000,新收到一个数据包的序号是 1001,则这个 1001 一定是之前已经读过的了~这个时候,同样可以把这个新的数据包判定为“重复的包”直接丢弃掉~~~
上面谈到的 ACK,重传,保证顺序,自动取宠,其实都是 TCP 已经内置好了的,我们使用 TCP 的 API 的时候,outputStream.write() 只需要简单的调用这一行代码,上述功能都自动生效了~~~
(UDP 的不可靠,我们就需要好好考虑一下上面的问题了~~~)
补充:
超时是会重传,但是重传过程中,也是有一定策略的。
1. 重传次数是有上限的,重传到一定的程序,还没有收到 ACK,就会尝试重置连接,如果充值也失败,发送方就会直接放弃连接。
2. 重传的超时时间阈值也不是固定不变的,会随着重传次数的增加而增大。(换句话讲,就是重传的频率会越来越低)(因为:如果经历过了重传之后,还出现了丢包情况,那大概率是网络出现了比较严重的问题了,再怎么重传,也是白费劲,不如省点力气~~~)
举个栗子:
假设:一次网络通信过程中,丢包的概率是 10%(这已经是一个非常夸张的数字了!!!)
包能顺利到达的概率是 90%,那我们重传了一次,却又发生丢包,即两次传输数据都丢包的概率是 10% * 10% = 1% ==》换个角度看,两次传输包至少有一次能到达的概率是 99%,随着重传的次数增加,包到达接收方的概率也会大大增加,如果我们连续重传了三四次仍然还是发生丢包,只能说明,此时的丢包率是非常非常非常大了,意味着此时的网络已经出现了非常非常严重的故障了!!!再重传也意义不大了~~~
完!
相关文章:
网络原理 - 4(TCP - 1)
目录 TCP 协议 TCP 协议段格式 可靠传输 几个 TCP 协议中的机制 1. 确认应答 2. 超时重传 完! TCP 协议 TCP 全称为 “传输控制协议”(Transmission Control Protocol),要对数据的传输进行一个详细的控制。 TCP 协议段格…...
强化学习框架:OpenRLHF源码解读,模型处理
本文主要介绍 强化学习框架:OpenRLHF源码解读,模型处理 models框架设计 了解一下 OpenRLHF的模型框架设计范式: From:https://arxiv.org/pdf/2405.11143 可以知道一个大概的流程:输入Pormpt通过Actor model输出回复 Response&am…...
STL常用算法——C++
1.概述 2.常用遍历算法 1.简介 2.for_each 方式一:传入普通函数(printf1) #include<stdio.h> using namespace std; #include<string> #include<vector> #include<functional> #include<algorithm> #include…...
UofTCTF-2025-web-复现
感兴趣朋友可以去我博客里看,画风更好看 UofTCTF-2025-web-复现 文章目录 scavenger-huntprismatic-blogscode-dbprepared-1prepared-2timeless scavenger-hunt 国外的一些ctf简单题就喜欢把flag藏在注释里,开源代码找到第一部分的flag 抓个包返回数据…...
Ruby 正则表达式
Ruby 正则表达式 引言 正则表达式(Regular Expression,简称Regex)是一种强大的文本处理工具,在编程和数据处理中有着广泛的应用。Ruby 作为一种动态、灵活的编程语言,同样内置了强大的正则表达式功能。本文将详细介绍…...
[密码学基础]GB与GM国密标准深度解析:定位、差异与协同发展
[密码学基础]GB与GM国密标准深度解析:定位、差异与协同发展 导语 在国产密码技术自主可控的浪潮下,GB(国家标准)与GM(密码行业标准)共同构建了我国商用密码的技术规范体系。二者在制定主体、法律效力、技术…...
代理设计模式:从底层原理到源代码 详解
代理设计模式(Proxy Pattern)是一种结构型设计模式,它通过创建一个代理对象来控制对目标对象的访问。代理对象充当客户端和目标对象之间的中介,允许在不修改目标对象的情况下添加额外的功能(如权限控制、日志记录、延迟…...
15.第二阶段x64游戏实战-分析怪物血量(遍历周围)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 上一个内容:14.第二阶段x64游戏实战-分析人物的名字 如果想实现自动打怪,那肯定…...
HarmonyOS 基础语法概述 UI范式
ArkUI框架 - UI范式 ArkTS的基本组成 装饰器: 用于装饰类、结构、方法以及变量,并赋予其特殊的含义。如上述示例中Entry、Component和State都是装饰器,Component表示自定义组件,Entry表示该自定义组件为入口组件,Stat…...
专题讨论2:树与查找
在讨论前先回顾一下定义: BST树的定义 二叉搜索树是一种特殊的二叉树,对于树中的任意一个节点: 若它存在左子树,那么左子树中所有节点的值都小于该节点的值。 若它存在右子树,那么右子树中所有节点的值都大于该节点…...
django之数据的翻页和搜索功能
数据的翻页和搜素功能 目录 1.实现搜素功能 2.实现翻页功能 一、实现搜素功能 我们到bootstrap官网, 点击组件, 然后找到输入框组, 并点击作为额外元素的按钮。 我们需要使用上面红色框里面的组件, 就是搜素组件, 代码部分就是下面红色框框出来的部分。 把这里的代码复制…...
盈达科技GEO供应商:用AICC智能认知攻防系统重构AI时代的“内容主权”
《盈达科技GEO供应商:用AICC智能认知攻防系统重构AI时代的“内容主权”》 ——从全网认知统一到多模态智能投喂,破解生成式AI的内容暗战 前言 当用户向ChatGPT提问“XX品牌空调质量如何”时,AI的回答可能直接决定企业30%的潜在客户流向。 生…...
unity脚本-FBX自动化模型面数校验
根据目前模型资源平均面数预算进行脚本制作,自动化校验模型面数是否符合规范。 *注:文件格式为.cs。需要放置在unity资源文件夹Assets>Editor下。 测试效果(拖一个fbx文件进unity时自动检测): 以下为完整代码 us…...
C++用于保留浮点数的两位小数,使用宏定义方法(可兼容低版本Visual Studio)
文章目录 一、 描述二、 样例二、 结果输出 一、 描述 这个宏定义(可放入.h头文件里)使用基本的数学运算,几乎兼容所有版本的VS,以下可对正数做四舍五入: #define ROUND_TO_TWO(x) ( (floor((x) * 100 0.5) / 100) …...
day30 学习笔记
文章目录 前言一、凸包特征检测1.穷举法2.QuickHull法 二、图像轮廓特征查找1.外接矩形2.最小外接矩形3.最小外接圆 前言 通过今天的学习,我掌握了OpenCV中有关凸包特征检测,图像轮廓特征查找的相关原理和操作 一、凸包特征检测 通俗的讲,凸…...
[密码学基础]密码学发展简史:从古典艺术到量子安全的演进
密码学发展简史:从古典艺术到量子安全的演进 密码学作为信息安全的基石,其发展贯穿人类文明史,从最初的文字游戏到量子时代的数学博弈,每一次变革都深刻影响着政治、军事、科技乃至日常生活。本文将以技术演进为主线,…...
(51单片机)LCD显示温度(DS18B20教程)(LCD1602教程)(延时函数教程)(单总线教程)
演示视频: LCD显示温度 源代码 如上图将9个文放在Keli5 中即可,然后烧录在单片机中就行了 烧录软件用的是STC-ISP,不知道怎么安装的可以去看江科大的视频: 【51单片机入门教程-2020版 程序全程纯手打 从零开始入门】https://www.…...
服务器运维:服务器流量的二八法则是什么意思?
文章目录 用户行为角度时间分布角度应用场景角度 服务器流量的二八法则,又称 80/20 法则,源自意大利经济学家帕累托提出的帕累托法则,该法则指出在很多情况下,80% 的结果是由 20% 的因素所决定的。在服务器流量领域,二…...
高并发秒杀使用RabbitMQ的优化思路
高并发秒杀使用RabbitMQ的优化思路 一、判断是否重复抢购(防止一人多次秒杀)的逻辑1. 整体逻辑代码2. 原始判断重复抢购的方式:3. 后来优化为什么用 Redis 判断? 二、高并发下优化过的秒杀逻辑1.秒杀核心逻辑(请求入口)…...
B + 树与 B 树的深度剖析
在数据库领域,B 树和 B 树是两种极为关键的数据结构,它们对于数据的存储、查询以及索引的构建等方面都有着深远的影响。深刻理解这两种树的原理、特性以及它们之间的差异,对于数据库的性能优化、数据组织和管理等工作具有不可替代的重要作用…...
【LeetCode】嚼烂热题100【持续更新】
2、字母异位词分组 方法一:排序哈希表 思路:对每个字符串排序,排序后的字符串作为键插入到哈希表中,值为List<String>形式存储单词原型,键为排序后的字符串。 Map<String, List<String>> m new Ha…...
赛灵思 XC7K325T-2FFG900I FPGA Xilinx Kintex‑7
XC7K325T-2FFG900I 是 Xilinx Kintex‑7 系列中一款工业级 (I) 高性能 FPGA,基于 28 nm HKMG HPL 工艺制程,核心电压标称 1.0 V,I/O 电压可在 0.97 V–1.03 V 之间灵活配置,并可在 –40 C 至 100 C 温度范围内稳定运行。该器件提供…...
【速写】多LoRA并行衍生的一些思考
迁移学习上的一个老问题,怎么做多领域的迁移?以前的逻辑认为领域迁移属于是对参数做方向性的调整,如果两个领域方向相左,实际上不管怎么加权相加都是不合理的。 目前一些做法想着去观察LoRA权重矩阵中的稠密块与稀疏块࿰…...
探索智能仓颉!Cangjie Magic:码字之间,意境自生
仓颉输入法,对于许多老牌中文使用者来说,不仅仅是一种输入工具,更是一种情怀,一种文化符号。它以拆字为核心,将汉字结构还原成最原始的构件,再通过特定的编码规则进行输入。然而,随着拼音输入法…...
py默认框架和代码
py默认框架 平常工作日常需要频繁写python脚本,留下一个常用的模板 # template.py import logging import json import time import functools import os from typing import Any, Dict, Optional, Union from pathlib import Path from logging.handlers import …...
通过 Samba 服务实现 Ubuntu 和 Windows 之间互传文件
在 Ubuntu 上进行配置 1. 安装 Samba 服务 打开终端,输入以下命令来安装 Samba: sudo apt update sudo apt install samba2. 创建共享目录 可以使用以下命令创建一个新的共享目录,例如创建名为 shared_folder 的目录: sudo m…...
k8s-1.28.10 安装metrics-server
1.简介 Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。Metric server从每个节点上KubeletAPI收集指标,通过Kubernetes聚合器注册在Master APIServer中。为集群提供Node、Pods资源利用率指标。 2.下载yaml文件 wget https:/…...
基于外部中中断机制,实现以下功能: 1.按键1,按下和释放后,点亮LED 2.按键2,按下和释放后,熄灭LED 3.按键3,按下和释放后,使得LED闪烁
题目: 参照外部中断的原理和代码示例,再结合之前已经实现的按键切换LED状态的实验,用外部中断改进其实现。 请自行参考文档《中断》当中,有关按键切换LED状态的内容, 自行连接电路图,基于外部中断机制,实现以下功能&am…...
【我的创作纪念日】 --- 与CSDN走过的第365天
个人主页:夜晚中的人海 不积跬步,无以至千里;不积小流,无以成江海。-《荀子》 文章目录 🎉一、机缘🚀二、收获🎡三、 日常⭐四、成就🏠五、憧憬 🎉一、机缘 光阴似箭&am…...
学习笔记——《Java面向对象程序设计》-继承
参考教材: Java面向对象程序设计(第3版)微课视频版 清华大学出版社 1、定义子类 class 子类名 extends 父类名{...... }如: class Student extends People{...... } (1)如果一个类的声明中没有extends关…...

