当前位置: 首页 > article >正文

c语言第一个小游戏:贪吃蛇小游戏03

我们为贪吃蛇的节点设置为一个结构体,构成贪吃蛇的身子的话我们使用链表,链表的每一个节点是一个结构体

显示贪吃蛇身子的一个节点

我们这边node就表示一个蛇的身体  就是一小节

输出结果如下

显示贪吃蛇完整身子

效果如下

代码实现

        这个hasSnakeNode(hang,lie)这个函数就是来判断当前这个坐标是否为蛇的身子的坐标,坐标带进去,如果符合return 1;那么返回1 到地图这里   1  的话就是ture 使hasSnakeNode这个函数生效,然后打印[ ]蛇身。那么函数封装的好处就是在于我们可以进行多个节点的判断

        宏观的看,每个坐标都会进入到hasSnakeNode(hang,lie)进行判断,如果行列坐标等于蛇身子的行列坐标,那么就返回1        我们会去想p的下一项是哪里操作的 请看main函数node1.next=&next2,这个是关键,才能遍历链表,暂时是静态的写链表,下一次我们用动态添加的方法进行添加节点

代码

#include <curses.h>

struct snack{

        int hang;

        int lie;

        struct snack *next;

};

struct snack node1 = {2,2,NULL};

struct snack node2 = {2,3,NULL};

struct snack node3 = {2,4,NULL};

void initgame()

{

        initscr();

        keypad(stdscr,1);

}

int  hasSnackNode(int i,int j)

{

        struct snack *p;

        p = &node1;

        while(p != NULL){

                if(p->hang==i && p->lie==j){

                        return 1;

                }

                p=p->next;

        }

        return 0;

}

void gamepic()

{

        int hang;

        int lie;

        for(hang=0;hang<20;hang++){

                if(hang == 0){

                        for(lie=0;lie<20;lie++){

                                printw("--");

 }

                 printw("\n");

                }

                if(hang>=0 && hang<=19){

                        for(lie=0;lie<=20;lie++){

                                 if(lie==0||lie==20){

                                         printw("|");

                                 }else if(hasSnackNode(hang,lie)){

                                        printw("[]");

                                 }

                                 else{

                                         printw("  ");

                                 }

                        }

                        printw("\n");

                }

                if(hang == 19){

                        for(lie=0;lie<20;lie++){

                                 printw("--");

                        }

                        printw("\n");

                }

          }

          printw("by shijintao");

   }

int main()

{

initgame();

                node1.next = &node2;

                node2.next = &node3;

                gamepic();

                getch();

                endwin();

                return 0;

}

但是这个太土了我们要进行优化

我们用封装函数的方法

显示贪吃蛇完整身子

优化代码

#include <curses.h>

#include <stdlib.h>

struct snake{

        int hang;

        int lie;

        struct snake *next;

};

struct snake *head;//全局变量

struct snake *tail;//全局变量

void initgame()

{

        initscr();

        keypad(stdscr,1);

}

int  hasSnakeNode(int i,int j)

{

        struct snake *p;

        p = head; //现在头节点是head  不是node1了  而且这个head是通过initSnake影响的,因为head是全局变量,所以可以使用head

        while(p != NULL){

                if(p->hang==i && p->lie==j){

                        return 1;

                }

                p=p->next;

        }

        return 0;

}

void gamepic()

{

        int hang;

        int lie;

        for(hang=0;hang<20;hang++){

                if(hang == 0){

                        for(lie=0;lie<20;lie++){

                                printw("--");

                        }

printw("\n");

                }

                if(hang>=0 && hang<=19){

                        for(lie=0;lie<=20;lie++){

                                 if(lie==0||lie==20){

                                         printw("|");

                                 }else if(hasSnakeNode(hang,lie)){

                                        printw("[]");

                                 }

                                 else{

                                         printw("  ");

                                 }

                        }

                        printw("\n");

                }

                if(hang == 19){

                        for(lie=0;lie<20;lie++){

                                 printw("--");

                        }

                        printw("\n");

                }

          }

          printw("by shijintao");

   }

void addNode()

{

        struct snake *new;

        new =(struct snake *)malloc(sizeof(struct snake));

        new->hang=tail->hang; //最先开始tail的值等于head

        new->lie=tail->lie+1;

        tail->next = new;

        tail = new;//每次改变tail的值

        new->next = NULL;

}

void  initSnake()

{

        head = (struct snake *)malloc(sizeof(struct snake));

        head->hang=2;

        head->lie=2;

        head->next=NULL;

        tail = head;

        addNode();

}

int main()

{

                initgame();

                initSnake();

                gamepic();

                getch();

                endwin();

                return 0;

}

代码优化的点:

将原先死板添加的,变成动态的添加节点,并进行封装,减少代码冗余

void  initSnake()

{

        head = (struct snake *)malloc(sizeof(struct snake));    

        head->hang=2;//这些都是设置初始值

        head->lie=2;

        head->next=NULL;

        tail = head;//蛇的初始状态头节点也是尾节点

        addNode(); //如果你不加这个的话  蛇的身子就只有一个,我觉得加一个也就是比较好看

}

void addNode()

{

        struct snake *new;

        new =(struct snake *)malloc(sizeof(struct snake));

        new->hang=tail->hang; //这个只是单纯的向右边加入,不考虑方向,以后回头来看不要被误导

        new->lie=tail->lie+1;

        tail->next = new;

        tail = new;//可以这样想每次新节点插入后这个tail的值(行和列)都会回到最上方全局变量的地方然后,tail的值是不会被刷新的,是一直被影响的,被上一个节点影响,随后保存信息,因为他是全局变量

        new->next = NULL;

}

initSnake()这个函数直接就是把蛇的头节点,也就是蛇的初始位置,hang、lie 都默认的设置好,就像我们玩贪吃蛇初始有个蛇停在那边,这个函数就是这个作用。

这两个函数搭配使用组成了蛇的身子,我们都说用动态创建链表要用到指针,且链表都是有头节点和尾节点,为了不容易出现错误 我们将头指针和尾指针设置为全局变量。

头节点是指针,我们需要为指针赋予一个内存空间,因为后面我们需要在尾点后方插入新的节点,那么我们需要将新节点每次开辟一个空间。

最先开始尾节点就是头节点

addNode是添加新节点到尾节点后边

我们将添加新节点,还有初始化贪吃蛇的行列,封装成了函数,直接调用函数即可在尾部添加新节点

相关文章:

c语言第一个小游戏:贪吃蛇小游戏03

我们为贪吃蛇的节点设置为一个结构体&#xff0c;构成贪吃蛇的身子的话我们使用链表&#xff0c;链表的每一个节点是一个结构体 显示贪吃蛇身子的一个节点 我们这边node就表示一个蛇的身体 就是一小节 输出结果如下 显示贪吃蛇完整身子 效果如下 代码实现 这个hasSnakeNode(…...

​​​​​​​大规模预训练范式(Large-scale Pre-training)

大规模预训练指在巨量无标注数据上&#xff0c;通过自监督学习训练大参数量的基础模型&#xff0c;使其具备通用的表征与推理能力。其重要作用如下&#xff1a; 一 跨任务泛化 单一模型可在微调后处理多种NLP&#xff08;自然语言处理&#xff09;、CV&#xff08;计算机视觉…...

基于Flink的用户画像 OLAP 实时数仓统计分析

1.基于Flink的用户画像 OLAP 实时数仓统计分析 数据源是来自业务系统的T日数据&#xff0c;利用kakfa进行同步 拼接多个事实表形成大宽表&#xff0c;优化多流Join方式&#xff0c;抽取主键和外键形成主外键前置层&#xff0c;抽取外键和其余内容形成融合层&#xff0c;将4次事…...

React Native踩坑实录:解决NativeBase Radio组件在Android上的兼容性问题

React Native踩坑实录&#xff1a;解决NativeBase Radio组件在Android上的兼容性问题 问题背景 在最近的React Native项目开发中&#xff0c;我们的应用在iOS设备上运行良好&#xff0c;但当部署到Android设备时&#xff0c;进入语言设置和隐私设置页面后应用崩溃。我们遇到了…...

iptables实现DDos

最近有客户要定制路由器的默认防火墙等级&#xff0c;然后涉及到了DDos规则&#xff0c;对比客户提供的规则发现我们现有的规则存在明显的错误&#xff0c;在此记录一下如何使用iptables防护DDoS攻击 直接贴一下规则 #开启TCP SYN Cookies 机制 sysctl -w net.ipv4.tcp_synco…...

WPF之高级绑定技术

文章目录 引言多重绑定&#xff08;MultiBinding&#xff09;基本概念实现自定义IMultiValueConverterMultiBinding在XAML中的应用示例使用StringFormat简化MultiBinding 优先级绑定&#xff08;PriorityBinding&#xff09;基本概念PriorityBinding示例实现PriorityBinding的后…...

调出事件查看器界面的4种方法

方法1. 方法2. 方法3. 方法4....

使用vite重构vue-cli的vue3项目

一、修改依赖 首先修改 package.json&#xff0c;修改启动方式与相应依赖 移除vue-cli并下载vite相关依赖&#xff0c;注意一些peerDependency如fast-glob需要手动下载 # 移除 vue-cli 相关依赖 npm remove vue/cli-plugin-babel vue/cli-plugin-eslint vue/cli-plugin-rout…...

Go-GJSON 组件,解锁 JSON 读取新姿势

现在的通义灵码不但全面支持 Qwen3&#xff0c;还支持配置自己的 MCP 工具&#xff0c;还没体验过的小伙伴&#xff0c;马上配置起来啦~ https://click.aliyun.com/m/1000403618/ 在 Go 语言开发领域&#xff0c;json 数据处理是极为常见的任务。Go 标准库提供了 encoding/jso…...

Java详解LeetCode 热题 100(14):LeetCode 56. 合并区间(Merge Intervals)详解

文章目录 1. 题目描述2. 理解题目3. 解法一:排序 + 一次遍历法3.1 思路3.2 Java代码实现3.3 代码详解3.4 复杂度分析3.5 适用场景4. 解法二:双指针法4.1 思路4.2 Java代码实现4.3 代码详解4.4 复杂度分析4.5 与解法一的比较5. 解法三:TreeMap法5.1 思路5.2 Java代码实现5.3 …...

将Docker镜像变为可执行文件?体验docker2exe带来的便捷!

在现代软件开发中,容器化技术极大地改变了应用程序部署和管理的方式。Docker,作为领先的容器化平台,已经成为开发者不可或缺的工具。然而,对于不熟悉Docker的用户来说,接触和运行Docker镜像可能会是一个复杂的过程。为了解决这一问题,docker2exe项目应运而生。它提供了一…...

ev_loop_fork函数

libev监视器介绍&#xff1a;libev监视器用法-CSDN博客 libev loop对象介绍&#xff1a;loop对象-CSDN博客 libev ev_loop_fork函数介绍:ev_loop_fork函数-CSDN博客 libev API吐血整理&#xff1a;https://download.csdn.net/download/qq_39466755/90794251?spm1001.2014.3…...

数据治理域——数据治理体系建设

摘要 本文主要介绍了数据治理系统的建设。数据治理对企业至关重要&#xff0c;其动因包括应对数据爆炸增长、提升内部管理效率、支撑复杂业务需求、加强风险防控与合规管理以及实现数字化转型战略。其核心目的是提升数据质量、统一数据标准、优化数据资产管理、支撑业务发展和…...

ES常识7:ES8.X集群允许4个 master 节点吗

在 Elasticsearch&#xff08;ES&#xff09;中&#xff0c;4 个 Master 节点的集群可以运行&#xff0c;但存在稳定性风险&#xff0c;且不符合官方推荐的最佳实践。以下从选举机制、故障容错、资源消耗三个维度详细分析&#xff1a; 一、4 个 Master 节点的可行性&#xff1…...

onGAU:简化的生成式 AI UI界面,一个非常简单的 AI 图像生成器 UI 界面,使用 Dear PyGui 和 Diffusers 构建。

​一、软件介绍 文末提供程序和源码下载 onGAU&#xff1a;简化的生成式 AI UI界面开源程序&#xff0c;一个非常简单的 AI 图像生成器 UI 界面&#xff0c;使用 Dear PyGui 和 Diffusers 构建。 二、Installation 安装 文末下载后解压缩 Run install.py with python to setup…...

【第52节】Windows编程必学之从零手写C++调试器下篇(仿ollydbg)

目录 一、引言 二、调试器核心功能设计与实现 三、断点功能 四、高级功能 五、附加功能 六、开发环境与实现概要 七、项目展示及完整代码参考 八、总结 一、引言 在软件开发领域&#xff0c;调试器是开发者不可或缺的工具。它不仅能帮助定位代码中的逻辑错误&#xff0…...

uni-app学习笔记五--vue3插值表达式的使用

vue3快速上手导航&#xff1a;简介 | Vue.js 模板语法 插值表达式 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; <span>Message: {{ msg }}</span> 双大括号标签会被替换为相应组件实例中 msg 属性的值。同…...

C++类与对象(二):六个默认构造函数(一)

在学C语言时&#xff0c;实现栈和队列时容易忘记初始化和销毁&#xff0c;就会造成内存泄漏。而在C的类中我们忘记写初始化和销毁函数时&#xff0c;编译器会自动生成构造函数和析构函数&#xff0c;对应的初始化和在对象生命周期结束时清理资源。那是什么是默认构造函数呢&…...

OpenCV CUDA 模块中在 GPU 上对图像或矩阵进行 翻转(镜像)操作的一个函数 flip()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::cuda::flip 是 OpenCV 的 CUDA 模块中的一个函数&#xff0c;用于在 GPU 上对图像或矩阵进行 翻转&#xff08;镜像&#xff09;操作。它类似…...

基于大模型的原发性醛固酮增多症全流程预测与诊疗方案研究

目录 一、引言 1.1 研究背景与意义 1.2 国内外研究现状 1.3 研究目的与方法 二、原发性醛固酮增多症概述 2.1 疾病定义与发病机制 2.2 临床表现与诊断标准 2.3 流行病学特征 三、大模型预测原理与技术 3.1 大模型简介 3.2 预测原理与算法 3.3 数据收集与预处理 四…...

从逻辑学视角探索数学在数据科学中的系统应用:一个整合框架

声明&#xff1a;一家之言&#xff0c;看个乐子就行。 图表采用了两个维度组织知识结构&#xff1a; 垂直维度&#xff1a;从上到下展示了知识的抽象到具体的演进过程&#xff0c;分为四个主要层级&#xff1a; 逻辑学基础 - 包括数理逻辑框架和证明理论数学基础结构 - 涵盖…...

Matplotlib 完全指南:从入门到精通

前言 Matplotlib 是 Python 中最基础、最强大的数据可视化库之一。无论你是数据分析师、数据科学家还是研究人员&#xff0c;掌握 Matplotlib 都是必不可少的技能。本文将带你从零开始学习 Matplotlib&#xff0c;帮助你掌握各种图表的绘制方法和高级技巧。 目录 Matplotli…...

如何有效追踪需求的实现情况

有效追踪需求实现情况&#xff0c;需要清晰的需求定义、高效的需求跟踪工具、持续的沟通反馈机制&#xff0c;其中高效的需求跟踪工具尤为关键。 使用需求跟踪工具能确保需求实现进度可视化、提高团队协作效率&#xff0c;并帮助识别和管理潜在风险。例如&#xff0c;使用专业的…...

自动驾驶技术栈——DoIP通信协议

一、DoIP协议简介 DoIP&#xff0c;英文全称是Diagnostic communication over Internet Protocol&#xff0c;是一种基于因特网的诊断通信协议。 DoIP协议基于TCP/IP等网络协议实现了车辆电子控制单元(ECU)与诊断应用程序之间的通信&#xff0c;常用于汽车行业的远程诊断、远…...

C++ 与 Go、Rust、C#:基于实践场景的语言特性对比

目录 ​编辑 一、语法特性对比 1.1 变量声明与数据类型 1.2 函数与控制流 1.3 面向对象特性 二、性能表现对比​编辑 2.1 基准测试数据 在计算密集型任务&#xff08;如 10⁷ 次加法运算&#xff09;中&#xff1a; 在内存分配测试&#xff08;10⁵ 次对象创建&#xf…...

Docker 中的 DNS 解析机制

在 Docker 容器化环境中,网络连接是至关重要的,而 DNS(Domain Name System,域名系统)解析则是网络通信的基础。容器需要能够解析内部服务名称以及外部域名,以便与其他容器或外部世界进行交互。理解 Docker 如何处理 DNS 请求,可以帮助我们更好地配置和排查网络问题。 D…...

数字化工厂中央控制室驾驶舱系统 API接口文档

数字化工厂中央控制室驾驶舱系统 API接口文档 本文档详细描述了数字化工厂中央控制室驾驶舱系统的API接口规范&#xff0c;包括中端服务提供的数据接口和算法接口。 1. 通用规范 1.1 基础URL 后端服务: http://localhost:8000中端服务数据API: http://localhost:8001中端服…...

如何更改默认字体:ONLYOFFICE 协作空间、桌面编辑器、文档测试示例

在处理办公文件时&#xff0c;字体对提升用户体验至关重要。本文将逐步指导您如何在 ONLYOFFICE 协作空间、桌面应用及文档测试示例中自定义默认字体&#xff0c;以满足个性化需求&#xff0c;更好地掌控文档样式。 关于 ONLYOFFICE ONLYOFFICE 是一个国际开源项目&#xff0c…...

设计模式之工厂模式(二):实际案例

设计模式之工厂模式(一) 在阅读Qt网络部分源码时候&#xff0c;发现在某处运用了工厂模式&#xff0c;而且编程技巧也用的好&#xff0c;于是就想分享出来&#xff0c;供大家参考&#xff0c;理解的不对的地方请多多指点。 以下是我整理出来的类图&#xff1a; 关键说明&#x…...

基于VeRL源码深度拆解字节Seed的DAPO

1. 背景与现状&#xff1a;从PPO到GRPO的技术演进 1.1 PPO算法的基础与局限 Proximal Policy Optimization&#xff08;PPO&#xff09;作为当前强化学习领域的主流算法&#xff0c;通过重要性采样比率剪裁机制将策略更新限制在先前策略的近端区域内&#xff0c;构建了稳定的…...