当前位置: 首页 > article >正文

【文心智能体】使用文心一言来给智能体设计一段稳定调用工作流的提示词

🌹欢迎来到《小5讲堂》🌹
🌹这是《文心智能体》系列文章,每篇文章将以博主理解的角度展开讲解。🌹
🌹温馨提示:博主能力有限,理解水平有限,若有不对之处望指正!🌹

在这里插入图片描述

目录

  • 前言
  • 智能体信息
    • 名称
    • 简介
    • 人设
    • 开场白
  • 工作流
    • 消息节点
    • 文本处理节点
    • 插件节点
    • 图片消息节点
  • 输出效果
  • 小技巧
    • 一、结构化框架设计
      • 1. **角色定位+任务拆解**
      • 2. **四要素公式法**
    • 二、多轮对话优化
      • 1. **分步骤引导**
      • 2. **示例参考法**
    • 三、细节强化技巧
      • 1. **输出格式标准化**
      • 2. **专业术语与风格**
    • 四、避免常见误区
      • 1. **模糊需求导致输出偏差**
      • 2. **过度复杂导致理解困难**
  • 相关文章

前言

文心一言已经升级到版本为4.5 Turbo和X1 Turbo,效果应该会比之前会更加好,那就用TA来生成一段智能体提示词吧,来看看效果如何。
在这里插入图片描述

智能体信息

名称

职业卡通形象生成器

简介

一键生成专属职业卡通头像,趣味职场新形象!

人设

work_to_head是工作流名称。

# 角色设定
你是一个「职业卡通形象生成器」,专门将用户的职业名称转化为可爱的卡通形象。你的核心能力是通过插件 `work_to_head` 生成符合职业特征的卡通图片。# 规则
1. **输入必须为职业名称**(如"消防员""程序员""教师")。
2. 如果输入内容不是职业名称或无法识别,必须拒绝请求并给出友好提示。
3. 禁止回答与职业卡通形象无关的问题。# 交互流程
1. 用户输入后,首先判断是否为有效职业名称:- 如果是 → 调用插件 `work_to_head` 生成卡通形象。- 如果不是 → 触发以下回复:"请输入真实的职业名称哦!比如:护士、画家、工程师~(*´▽`*)ノ"2. 插件调用成功后,返回卡通形象图片,并附带一句职业特征描述:"为您生成【XX职业】的卡通形象:阳光笑容+职业工具+标志性服装~"# 语气风格
活泼可爱,带有表情符号和颜文字,例如:
"程序员卡通来啦!(>ω<)/ 黑框眼镜+咖啡杯+格子衫标配~"

开场白

开场文案

告诉我你的职业,马上变卡通!🚀

开场白问题
生成一个【消防员】的卡通形象!🚒👨‍🚒
帮我画一个【插画师】的可爱卡通!✏️🖌️
来个【程序员】的卡通形象!👓💾
想要一个【魔法师】的卡通版!✨🔮
能不能生成一个【美食博主】的卡通?🍕🎤

工作流

这里为什么要使用工作流,有个小技巧。
目的之一是使用工作流的消息能够让智能体快速响应,从而让智能体通过质量分析达到百度搜索分发效果。
在这里插入图片描述

消息节点

这个消息节点费用灵活好用,可以在工作流的任意环节插入,会在工作流节点流程过程中,即时响应消息,让用户能够第一时间感知智能体正在操作。
在这里插入图片描述
在这里插入图片描述
消息节点输出效果
在这里插入图片描述

文本处理节点

其实这里可以使用大模型节点,博主这里为了让节点执行的更快,直接使用了固定文本+用户输入文本来组合输出一段新的文本。
目的是直接使用这一组合文本作为生成图片的提示词。
在这里插入图片描述

插件节点

使用插件节点里的官方图片处理插件【AI绘画助手】
在这里插入图片描述
固定高宽度输出,并且是1张图片数量。
用户的图片描述-query,就是上一个文本处理节点的值。
在这里插入图片描述

图片消息节点

博主这里同样使用了消息节点,直接根据图片Markdown格式输出。
其实如果后面没有其他节点了,直接在结束节点输出也是可以的。
在这里插入图片描述

输出效果

体验地址:https://mbd.baidu.com/ma/s/MXVhinsx在这里插入图片描述
在这里插入图片描述

小技巧

博主这里使用文心一言输出一段创建智能体的小技巧。在这里插入图片描述

一、结构化框架设计

1. 角色定位+任务拆解

  • 示例
    你是一位专业的旅游规划师,需根据用户输入的旅行天数、预算、偏好(如自然风光/人文历史),生成包含行程安排、交通建议、住宿推荐的3日杭州旅行方案。
  • 分析
  • 明确角色(旅游规划师)与任务(生成行程方案)
  • 细化用户需求维度(天数、预算、偏好),确保输出精准

2. 四要素公式法

  • 公式
    角色 + 背景 + 目标 + 行动要求

  • 示例
    你是一位小红书运营专家,用户希望推广一款国货美妆产品。目标是在3天内提升产品曝光量至10万+,需生成3篇符合平台调性的文案,包含产品卖点、用户痛点、互动话题,并附上相关话题标签。

  • 分析

  • 通过角色(小红书运营专家)与背景(推广国货美妆)明确场景

  • 目标(曝光量10万+)量化需求

  • 行动要求(文案内容、标签)细化执行标准


二、多轮对话优化

1. 分步骤引导

  • 示例
    第一轮:用户输入旅行天数与预算,生成基础行程框架。
    第二轮:根据用户反馈的偏好(如自然风光),细化每日行程,推荐景点与交通方式。

  • 分析

  • 通过分步骤提示词,将复杂任务拆解为多个子任务

  • 降低智能体理解难度,提升输出质量

2. 示例参考法

  • 示例
    参考以下案例生成回复:

用户:推荐杭州适合拍照的景点。
AI:西湖十景中的断桥残雪、雷峰塔,以及灵隐寺的黄墙青瓦,均为高人气拍照点。建议清晨或傍晚前往,光线更柔和。

  • 分析
  • 提供示例可帮助智能体理解回复风格与内容结构
  • 减少输出偏差

三、细节强化技巧

1. 输出格式标准化

  • 示例
    生成的产品推广文案需包含以下结构:

标题(15字内,突出产品核心卖点)
正文(分3段,首段痛点引入,中段产品功能解析,尾段引导互动)
话题标签(#国货之光 #美妆推荐)

  • 分析
  • 通过格式化要求,确保智能体输出符合平台规范
  • 提升内容可用性

2. 专业术语与风格

  • 示例
    你是一位法律顾问,回复需使用专业术语(如‘不可抗力’‘合同解除’),风格严谨客观,避免口语化表达。
  • 分析
  • 针对特定领域(如法律、医学),需明确术语与风格要求
  • 提升回复权威性

四、避免常见误区

1. 模糊需求导致输出偏差

  • 反例
    帮我写一篇文章。

  • 优化
    写一篇关于“人工智能在医疗领域的应用”的科普文章,面向普通读者,字数800字,需包含案例与未来展望。

  • 分析

  • 模糊需求易导致智能体输出偏离预期

  • 需细化主题、受众、字数、内容要求等

2. 过度复杂导致理解困难

  • 反例
    生成一篇涵盖历史、文化、经济、科技等多维度的杭州旅行攻略,要求语言优美、逻辑清晰、数据准确。
  • 优化
    生成一篇杭州3日旅行攻略,包含历史景点(如西湖、灵隐寺)、美食推荐(如东坡肉、龙井虾仁)、交通指南(地铁/公交路线),语言简洁实用。
  • 分析
  • 过度复杂的需求易导致智能体输出混乱
  • 需拆解维度并明确优先级

相关文章

【文心智能体】使用文心一言来给智能体设计一段稳定调用工作流的提示词

【文心智能体】使用免费满血版DeepSeek模型创建智能体,用一句话来生成背景图,来看看是如何实现的

【文心智能体】通过工作流使用知识库来实现信息查询输出,一键查看旅游相关信息,让出行多一份信心

【文心智能体】通过低代码工作流编排创建应用《挑战奥运问答拿奖牌》

【文心智能体】梗图七夕版,一分钟让你看懂如何优化prompt,以及解析低代码工作流编排实现过程和零代码结合插件实现过程,依然是干货满满,进来康康吧

【AI人工智能】文心智能体,00后疯感工牌生成器,低代码工作流的简单应用以及图片快速响应解决方案,干货满满,不容错过哦

【文心智能体】前几天百度热搜有一条非常有趣的话题《00后疯感工牌》,看看如何通过低代码工作流方式实现图片显示

【文心智能体】通过工作流使用知识库来实现信息查询输出,一键查看旅游相关信息,让出行多一份信心

相关文章:

【文心智能体】使用文心一言来给智能体设计一段稳定调用工作流的提示词

🌹欢迎来到《小5讲堂》🌹 🌹这是《文心智能体》系列文章,每篇文章将以博主理解的角度展开讲解。🌹 🌹温馨提示:博主能力有限,理解水平有限,若有不对之处望指正&#xff0…...

K8S中构建双架构镜像-从零到成功

背景介绍 公司一个客户的项目使用的全信创的环境,服务器采用arm64的机器,而我们的应用全部是amd64的,于是需要对现在公司流水线进行arm64版本的同步镜像生成。本文介绍从最开始到最终生成双架构的全部过程,以及其中使用的相关配置…...

pth的模型格式怎么变成SafeTensors了?

文章目录 背景传统模型格式的安全隐患效率与资源瓶颈跨框架兼容性限制Hugging Face 的解决方案:SafeTensors行业与社区的推动SafeTensors 的意义总结 背景 最近要找一些适合embedding的模型,在huggingface模型库上看到一些排名比较靠前的,准…...

iOS safari和android chrome开启网页调试与检查器的方法

手机开启远程调试教程(适用于 Chrome / Safari) 前端移动端调试指南|适用 iPhone 和 Android|WebDebugX 出品 本教程将详细介绍如何在 iPhone 和 Android 手机上开启网页检查器,配合 WebDebugX 实现远程调试。教程包含…...

c语言第一个小游戏:贪吃蛇小游戏03

我们为贪吃蛇的节点设置为一个结构体,构成贪吃蛇的身子的话我们使用链表,链表的每一个节点是一个结构体 显示贪吃蛇身子的一个节点 我们这边node就表示一个蛇的身体 就是一小节 输出结果如下 显示贪吃蛇完整身子 效果如下 代码实现 这个hasSnakeNode(…...

​​​​​​​大规模预训练范式(Large-scale Pre-training)

大规模预训练指在巨量无标注数据上,通过自监督学习训练大参数量的基础模型,使其具备通用的表征与推理能力。其重要作用如下: 一 跨任务泛化 单一模型可在微调后处理多种NLP(自然语言处理)、CV(计算机视觉…...

基于Flink的用户画像 OLAP 实时数仓统计分析

1.基于Flink的用户画像 OLAP 实时数仓统计分析 数据源是来自业务系统的T日数据,利用kakfa进行同步 拼接多个事实表形成大宽表,优化多流Join方式,抽取主键和外键形成主外键前置层,抽取外键和其余内容形成融合层,将4次事…...

React Native踩坑实录:解决NativeBase Radio组件在Android上的兼容性问题

React Native踩坑实录:解决NativeBase Radio组件在Android上的兼容性问题 问题背景 在最近的React Native项目开发中,我们的应用在iOS设备上运行良好,但当部署到Android设备时,进入语言设置和隐私设置页面后应用崩溃。我们遇到了…...

iptables实现DDos

最近有客户要定制路由器的默认防火墙等级,然后涉及到了DDos规则,对比客户提供的规则发现我们现有的规则存在明显的错误,在此记录一下如何使用iptables防护DDoS攻击 直接贴一下规则 #开启TCP SYN Cookies 机制 sysctl -w net.ipv4.tcp_synco…...

WPF之高级绑定技术

文章目录 引言多重绑定(MultiBinding)基本概念实现自定义IMultiValueConverterMultiBinding在XAML中的应用示例使用StringFormat简化MultiBinding 优先级绑定(PriorityBinding)基本概念PriorityBinding示例实现PriorityBinding的后…...

调出事件查看器界面的4种方法

方法1. 方法2. 方法3. 方法4....

使用vite重构vue-cli的vue3项目

一、修改依赖 首先修改 package.json,修改启动方式与相应依赖 移除vue-cli并下载vite相关依赖,注意一些peerDependency如fast-glob需要手动下载 # 移除 vue-cli 相关依赖 npm remove vue/cli-plugin-babel vue/cli-plugin-eslint vue/cli-plugin-rout…...

Go-GJSON 组件,解锁 JSON 读取新姿势

现在的通义灵码不但全面支持 Qwen3,还支持配置自己的 MCP 工具,还没体验过的小伙伴,马上配置起来啦~ https://click.aliyun.com/m/1000403618/ 在 Go 语言开发领域,json 数据处理是极为常见的任务。Go 标准库提供了 encoding/jso…...

Java详解LeetCode 热题 100(14):LeetCode 56. 合并区间(Merge Intervals)详解

文章目录 1. 题目描述2. 理解题目3. 解法一:排序 + 一次遍历法3.1 思路3.2 Java代码实现3.3 代码详解3.4 复杂度分析3.5 适用场景4. 解法二:双指针法4.1 思路4.2 Java代码实现4.3 代码详解4.4 复杂度分析4.5 与解法一的比较5. 解法三:TreeMap法5.1 思路5.2 Java代码实现5.3 …...

将Docker镜像变为可执行文件?体验docker2exe带来的便捷!

在现代软件开发中,容器化技术极大地改变了应用程序部署和管理的方式。Docker,作为领先的容器化平台,已经成为开发者不可或缺的工具。然而,对于不熟悉Docker的用户来说,接触和运行Docker镜像可能会是一个复杂的过程。为了解决这一问题,docker2exe项目应运而生。它提供了一…...

ev_loop_fork函数

libev监视器介绍:libev监视器用法-CSDN博客 libev loop对象介绍:loop对象-CSDN博客 libev ev_loop_fork函数介绍:ev_loop_fork函数-CSDN博客 libev API吐血整理:https://download.csdn.net/download/qq_39466755/90794251?spm1001.2014.3…...

数据治理域——数据治理体系建设

摘要 本文主要介绍了数据治理系统的建设。数据治理对企业至关重要,其动因包括应对数据爆炸增长、提升内部管理效率、支撑复杂业务需求、加强风险防控与合规管理以及实现数字化转型战略。其核心目的是提升数据质量、统一数据标准、优化数据资产管理、支撑业务发展和…...

ES常识7:ES8.X集群允许4个 master 节点吗

在 Elasticsearch(ES)中,4 个 Master 节点的集群可以运行,但存在稳定性风险,且不符合官方推荐的最佳实践。以下从选举机制、故障容错、资源消耗三个维度详细分析: 一、4 个 Master 节点的可行性&#xff1…...

onGAU:简化的生成式 AI UI界面,一个非常简单的 AI 图像生成器 UI 界面,使用 Dear PyGui 和 Diffusers 构建。

​一、软件介绍 文末提供程序和源码下载 onGAU:简化的生成式 AI UI界面开源程序,一个非常简单的 AI 图像生成器 UI 界面,使用 Dear PyGui 和 Diffusers 构建。 二、Installation 安装 文末下载后解压缩 Run install.py with python to setup…...

【第52节】Windows编程必学之从零手写C++调试器下篇(仿ollydbg)

目录 一、引言 二、调试器核心功能设计与实现 三、断点功能 四、高级功能 五、附加功能 六、开发环境与实现概要 七、项目展示及完整代码参考 八、总结 一、引言 在软件开发领域,调试器是开发者不可或缺的工具。它不仅能帮助定位代码中的逻辑错误&#xff0…...

uni-app学习笔记五--vue3插值表达式的使用

vue3快速上手导航&#xff1a;简介 | Vue.js 模板语法 插值表达式 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; <span>Message: {{ msg }}</span> 双大括号标签会被替换为相应组件实例中 msg 属性的值。同…...

C++类与对象(二):六个默认构造函数(一)

在学C语言时&#xff0c;实现栈和队列时容易忘记初始化和销毁&#xff0c;就会造成内存泄漏。而在C的类中我们忘记写初始化和销毁函数时&#xff0c;编译器会自动生成构造函数和析构函数&#xff0c;对应的初始化和在对象生命周期结束时清理资源。那是什么是默认构造函数呢&…...

OpenCV CUDA 模块中在 GPU 上对图像或矩阵进行 翻转(镜像)操作的一个函数 flip()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::cuda::flip 是 OpenCV 的 CUDA 模块中的一个函数&#xff0c;用于在 GPU 上对图像或矩阵进行 翻转&#xff08;镜像&#xff09;操作。它类似…...

基于大模型的原发性醛固酮增多症全流程预测与诊疗方案研究

目录 一、引言 1.1 研究背景与意义 1.2 国内外研究现状 1.3 研究目的与方法 二、原发性醛固酮增多症概述 2.1 疾病定义与发病机制 2.2 临床表现与诊断标准 2.3 流行病学特征 三、大模型预测原理与技术 3.1 大模型简介 3.2 预测原理与算法 3.3 数据收集与预处理 四…...

从逻辑学视角探索数学在数据科学中的系统应用:一个整合框架

声明&#xff1a;一家之言&#xff0c;看个乐子就行。 图表采用了两个维度组织知识结构&#xff1a; 垂直维度&#xff1a;从上到下展示了知识的抽象到具体的演进过程&#xff0c;分为四个主要层级&#xff1a; 逻辑学基础 - 包括数理逻辑框架和证明理论数学基础结构 - 涵盖…...

Matplotlib 完全指南:从入门到精通

前言 Matplotlib 是 Python 中最基础、最强大的数据可视化库之一。无论你是数据分析师、数据科学家还是研究人员&#xff0c;掌握 Matplotlib 都是必不可少的技能。本文将带你从零开始学习 Matplotlib&#xff0c;帮助你掌握各种图表的绘制方法和高级技巧。 目录 Matplotli…...

如何有效追踪需求的实现情况

有效追踪需求实现情况&#xff0c;需要清晰的需求定义、高效的需求跟踪工具、持续的沟通反馈机制&#xff0c;其中高效的需求跟踪工具尤为关键。 使用需求跟踪工具能确保需求实现进度可视化、提高团队协作效率&#xff0c;并帮助识别和管理潜在风险。例如&#xff0c;使用专业的…...

自动驾驶技术栈——DoIP通信协议

一、DoIP协议简介 DoIP&#xff0c;英文全称是Diagnostic communication over Internet Protocol&#xff0c;是一种基于因特网的诊断通信协议。 DoIP协议基于TCP/IP等网络协议实现了车辆电子控制单元(ECU)与诊断应用程序之间的通信&#xff0c;常用于汽车行业的远程诊断、远…...

C++ 与 Go、Rust、C#:基于实践场景的语言特性对比

目录 ​编辑 一、语法特性对比 1.1 变量声明与数据类型 1.2 函数与控制流 1.3 面向对象特性 二、性能表现对比​编辑 2.1 基准测试数据 在计算密集型任务&#xff08;如 10⁷ 次加法运算&#xff09;中&#xff1a; 在内存分配测试&#xff08;10⁵ 次对象创建&#xf…...

Docker 中的 DNS 解析机制

在 Docker 容器化环境中,网络连接是至关重要的,而 DNS(Domain Name System,域名系统)解析则是网络通信的基础。容器需要能够解析内部服务名称以及外部域名,以便与其他容器或外部世界进行交互。理解 Docker 如何处理 DNS 请求,可以帮助我们更好地配置和排查网络问题。 D…...