(c++)string的模拟实现
目录
1.构造函数
2.析构函数
3.扩容
1.reserve(扩容不初始化)
2.resize(扩容加初始化)
4.push_back
5.append
6. += 运算符重载
1.+=一个字符
2.+=一个字符串
7 []运算符重载
8.find
1.找一个字符
2.找一个字符串
9.insert
1.插入一个字符
2.插入一个字符串
9.erase
10.substr
11.运算符重载比较大小
1.<
2.==
3.<=
4.>
5.>=
6.!=
12.拷贝构造
13.赋值 =
14.<<
15.>>
16.迭代器
完整代码实现
首先我们先定义头文件String.h,和命名空间_string防止和库中的string发生名字冲突。
#include <iostream>
#include <cassert>
#include <string.h>
using namespace std;namespace _string {class string {public:static size_t npos;protected:char* _str;size_t _size;size_t _capacity;}size_t string::npos = -1;
}
其是我们的string类里面就是一个顺序表, 所以我们会定义一个数组_str,_size为实际字符所占的大小,_capacity为容量,如果达到了最大的容量我们就是_size == _capacity 我们就要进行扩容处理.
1.构造函数
string(const char* str = ""):_str(new char[strlen(str) + 1]),_size(strlen(str)),_capacity(strlen(str)){memcpy(_str, str, _size + 1);}
这里我们为什么要多开一个空间strlen(str) + 1呢?因为我们这里字符串后面会有'\0',我们要多开一个位置给'\0',但是为什么_size和_capacity为什么不用+1呢?因为我们的'\0' 不算大小,所以我们_size和_capacity不需要给多一个空间.
这里需要注意的是,我们开好空间的时候不要忘记去把str的内容拷贝的_str中,这里拷贝_size + 1是因为有'\0'也是需要拷贝的.
2.析构函数
~string() {if (_str) {delete[] _str;_size = _capacity = 0;}
}
这里析构函数我认为,如果_str为空才需要释放空间,不为空不需要判断,所以我们这里加上一个判断,不为空的时候才可以去释放空间。
3.扩容
1.reserve(扩容不初始化)
void reserve(size_t n) {if (n > _capacity) {char* tmp = new char[n + 1];memcpy(tmp, _str, _size + 1);delete[] _str;_str = tmp;_capacity = n;}
}
扩容的时候需要进行判断,如果n大于容量扩容才有意义,如果小于就没有意义了
2.resize(扩容加初始化)
void resize(size_t n , char ch = '\0') {if (n < _size) {_size = n;_str[_size] = '\0';}else {reserve(n);while (_size != n) {_str[_size++] = '\0';}_str[_size] = '\0';}
}
resize如果给的n容量会继续缩小,所以当n < _size的时候我们直接把n位置变为'\0'就可以了
如果这里的n > _ size,就会出现两种情况,一种是 _capacity > n > _size 还有一种是 n > _capacity
因为我们写了扩容reserve,里面有判断,所以我们之间继续复用就可以了,最后再完成数据的拷贝就可以了.
4.push_back
void push_back(char ch) {if (_size == _capacity) {reserve(_capacity == 0 ? 4 : _capacity * 2);}_str[_size++] = ch;_str[_size] = '\0';
}
5.append
void append(const char* str) {size_t len = strlen(str);if (_size + len > _capacity) {reserve(_size + len);}memcpy(_str+_size,str,len + 1);_size += len;
}
push_back和append都一样,使用时应该要检查容量是否足够,不够的时候再扩容,最后完成数据的拷贝就可以了.
6. += 运算符重载
1.+=一个字符
string& operator+=(char ch) {push_back(ch);return *this;
}
2.+=一个字符串
string& operator+=(const char* str) {append(str);return *this;
}
我们上面实现了push_back()和append()所以这里我们实现复用就可以了.
7 []运算符重载
//只读
const char operator[](size_t pos) const {assert(pos < _size);return _str[pos];
}//读写
char operator[](size_t pos) {assert(pos < _size);return _str[pos];
}
我们在进行重载的时候应该注意,pos的范围不能超过_size的大小.
8.find
1.找一个字符
找一个字符返回当前位置
//默认从0位置开始size_t find(char ch, size_t pos = 0) {assert(pos < _size);for (size_t i = pos; i < _size; i++) {if (_str[i] == ch) {return i;}}return npos;
}
2.找一个字符串
找一个字符串返回第一个字符出现的位置.
size_t find(const char* str, size_t pos) {assert(pos < _size);char* ptr = strstr(_str, str);if (ptr) {return ptr - _str;}else {return npos;}
}
什么两个如果都没有找到的话,会返回npos,npos是string中静态变量,为无符号数的最大值.
9.insert
1.插入一个字符
void insert(size_t pos , char ch) {assert(pos < _size);if (_size == _capacity) {reserve(_capacity == 0 ? 4 : _capacity*2);}//'\0'也要一起移动size_t end = _size;while (end >= pos && end != npos) {_str[end + 1] = _str[end];end--;}_str[pos] = ch;_size++;
}
2.插入一个字符串
void insert(size_t pos, const char* str) {size_t len = strlen(str);if (_size + len > _capacity) {reserve(_size + len);} //移动数据size_t end = _size;while (end >= pos && end != npos) {_str[end + len] = _str[end];end--;}//拷贝数据for (size_t i = 0; i < len; i++) {_str[pos + i] = str[i];}_size += len;
}
我们两个函数都需要注意的是移动数据的时候这里是end--,如果没有npos != end,pos的位置是0,会造成死循环的问题,这是为什么?
没有npos != end,如果pos的位置是0,那么循环的结束条件应该是end < 0,但是这里的end是无符号数,当end到达-1时相当于正数的最大值,不可能小于0. 所以我们这里应该要加上npos != end;
9.erase
void erase(size_t pos = 0 , size_t len = npos) {// '\0'也要移动所以可以等于 _size;assert(pos <= _size);if (pos + len >= _size || len == npos) {_str[_size] = '\0';_str[pos] = '\0';_size = pos;}else {size_t end = pos + len;while (end <= _size) {_str[pos++] = _str[end++];}_size -= len;}
}
从pos位置开始删除,长度为len的字符. 如果pos + len >= _size 或者说 len说民删除完后面的字符, 直接把pos换成'\0'就可以了.
如果pos + len < _size 就移动数据,为什么end <= _size ? 因为'\0'也要被移动.
10.substr
string substr(size_t pos = 0,size_t len = npos) {assert(pos < _size);//调整len的大小if (pos + len >= _size || len == npos) {len = _size - pos;}//预留好空间string tmp;tmp.reserve(len);for (size_t i = 0; i < len; i++){tmp += _str[pos + i];}tmp += '\0';return tmp;
}
不要忘记最后一个位置要加上'\0'
11.运算符重载比较大小
1.<
我们要注意有三种特殊的情况
hello helloo true
hello hell false
hello hello false
我们给两个长度len1,len2从0开始遍历碰到第一个小于就返回true,大于返回false,要是等于就继续len1和len2都要加加.
如果出了循环,我们看上面三种情况,只有len2 < str._size && len1 == _size 才能返回true
其他都是false,所以我们直接返回len2 < str._size && len1 == _size就可以了
bool operator<(const string& str) const {size_t len1 = 0, len2 = 0;while (len1 < _size && len2 < str._size) {if (_str[len1] < str._str[len2]) {return true;}else if (_str[len1] > str._str[len2]) {return false;}else {len1++;len2++;}}return len1 == _size && len2 < str._size;
}
2.==
bool operator==(const string& str) const {if (_size != str._size) {return false;}else {size_t len1 = 0, len2 = 0;while (len1 < _size && len2 < str._size) {if (_str[len1] < str._str[len2]) {return false;}else if (_str[len1] > str._str[len2]) {return false;}else {len1++;len2++;}}return true;}
}
如果两个字符串的长度不相等直接返回false就可以了,长度如果相等有不相等的两个字符也是直接返回false,如果能出循环直接返回true;
我们上面实现了< 和 = 我们直接复用就可以了
3.<=
bool operator<=(const string& str) const {return *this < str || *this == str;
}
4.>
bool operator>(const string& str) const {return !(*this <= str);
}
5.>=
bool operator>=(const string& str) const {return !(*this < str);
}
6.!=
bool operator!=(const string& str) const {return !(*this == str);
}
12.拷贝构造
类里面默认生成的拷贝构造为浅拷贝,如果我们直接用默认生成的赋值,会造成析构函数释放同一块空间两次的问题编译器会就行报错,所以我们需要实现深拷贝.
string(const string& str) {//要多给一个位置给'\0'char* _str = new char[str._capacity + 1];_size = str._size;_capacity = str._capacity;//'\0' 也要进行拷贝所以拷贝_size + 1memcpy(_str,str._str,str._size + 1);
}
13.赋值 =
和上面的拷贝构造一样,必须要实现深拷贝否则编译器会报错.
void swap(string& str) {std::swap(_str, str._str);std::swap(_size, str._size);std::swap(_capacity, str._capacity);
}//str为临时变量出了作用域就会销毁
//交换后不用就行处理
string& operator=(string str) {swap(str);return *this;
}
这里有很多人不明白赋值这里参数为什么不传引用?这里的string没有引用是一个临时变量,处理作用域就会销毁.所以我们把*this 的值和str的值进行交换不会有任何的问题
这里的<< 和 >> 我们一般不喜欢写在类里面,如果写在类里面,第一个参数默认是this指针,那么我们调用的时候就需要反过来写,不符合我们的习惯.
str >> cin
str << cout
14.<<
//按照_size的大小来进行打印
//不是碰到'\0'就停止
ostream& operator<<(ostream& _cout, const string& str) {for (size_t i = 0; i < str.size(); i++){_cout << str[i];}return _cout;
}
这里需要注意的是打印的是按照_size去打印,不是碰到'\0'就停下.
15.>>
//每次输入之前都要清空
istream& operator>>(istream& _cin, string& str) { //清空str.clear();char ch;//给一buff数组来减小拷贝来提高效率int i = 0;char buff[128] = { 0 };//读取前置空格ch = _cin.get();while (ch == '\n' || ch == ' ')ch = _cin.get();while (ch != '\n' && ch != ' ') {buff[i++] = ch;if (i == 127) {//最后一个位置给'\0'buff[i] = '\0';str += buff;i = 0;}ch = _cin.get();}//如果i不等于0说明里面还有字符if (i != 0) {buff[i] = '\0';str += buff;}return _cin;
}
16.迭代器
typedef char* iterator;
typedef const char* const_iterator;iterator begin() {return _str;
}iterator end() {return _str + _size;
}const_iterator begin() const {return _str;
}const_iterator end() const {return _str + _size;
}
完整代码实现
namespace _String {class string {friend ostream& operator<<(ostream& _cout, const string& str);friend istream& operator>>(istream& _cin, string& str);public:typedef char* iterator;typedef const char* const_iterator;iterator begin() {return _str;}iterator end() {return _str + _size;}const_iterator begin() const {return _str;}const_iterator end() const {return _str + _size;}string(const char* str = ""):_str(new char[strlen(str) + 1]), _size(strlen(str)), _capacity(strlen(str)){memcpy(_str, str, _size + 1);}~string() {if (_str) {delete[] _str;_size = _capacity = 0;}}string(const string& str) {//要多给一个位置给'\0'char* _str = new char[str._capacity + 1];_size = str._size;_capacity = str._capacity;//'\0' 也要进行拷贝所以拷贝_size + 1memcpy(_str,str._str,str._size + 1);}void swap(string& str) {std::swap(_str, str._str);std::swap(_size, str._size);std::swap(_capacity, str._capacity);}//str为临时变量出了作用域就会销毁//交换后不用就行处理string& operator=(string str) {swap(str);return *this;}//只读const char operator[](size_t pos) const {assert(pos < _size);return _str[pos];}//读写char operator[](size_t pos) {assert(pos < _size);return _str[pos];}// hello helloo true// hello hell false;// hello hello falsebool operator<(const string& str) const {size_t len1 = 0, len2 = 0;while (len1 < _size && len2 < str._size) {if (_str[len1] < str._str[len2]) {return true;}else if (_str[len1] > str._str[len2]) {return false;}else {len1++;len2++;}}return len1 == _size && len2 < str._size;}bool operator==(const string& str) const {if (_size != str._size) {return false;}else {size_t len1 = 0, len2 = 0;while (len1 < _size && len2 < str._size) {if (_str[len1] < str._str[len2]) {return false;}else if (_str[len1] > str._str[len2]) {return false;}else {len1++;len2++;}}return true;}}bool operator<=(const string& str) const {return *this < str || *this == str;}bool operator>(const string& str) const {return !(*this <= str);}bool operator>=(const string& str) const {return !(*this < str);}bool operator!=(const string& str) const {return !(*this == str);}void reserve(size_t n) {if (n > _capacity) {char* tmp = new char[n + 1];memcpy(tmp, _str, _size + 1);delete[] _str;_str = tmp;_capacity = n;}}void resize(size_t n, char ch = '\0') {if (n < _size) {_str[_size] = '\0';_size = n;_str[_size] = '\0';}else {//会自己判断不用加reserve(n);while (_size != n) {_str[_size++] = '\0';}_str[_size] = '\0';}}void push_back(char ch) {if (_size == _capacity) {reserve(_capacity == 0 ? 4 : _capacity * 2);}_str[_size++] = ch;_str[_size] = '\0';}void insert(size_t pos , char ch) {assert(pos <= _size);if (_size == _capacity) {reserve(_capacity == 0 ? 4 : _capacity*2);}//'\0'也要一起移动size_t end = _size;while (end >= pos && end != npos) {_str[end + 1] = _str[end];end--;}_str[pos] = ch;_size++;}void insert(size_t pos, const char* str) {assert(pos <= _size);size_t len = strlen(str);if (_size + len > _capacity) {reserve(_size + len);}//移动数据size_t end = _size;while (end >= pos && end != npos) {_str[end + len] = _str[end];end--;}//拷贝数据for (size_t i = 0; i < len; i++) {_str[pos + i] = str[i];}_size += len;}void erase(size_t pos = 0 , size_t len = npos) {// '\0'也要移动所以可以等于 _size;assert(pos <= _size);if (pos + len >= _size || len == npos) {_str[_size] = '\0';_str[pos] = '\0';_size = pos;}else {size_t end = pos + len;while (end <= _size) {_str[pos++] = _str[end++];}_size -= len;}}//如果len == npos 说明从pos位置开始截完全部string substr(size_t pos = 0,size_t len = npos) {assert(pos < _size);//调整len的大小if (pos + len >= _size || len == npos) {len = _size - pos;}//预留好空间string tmp;tmp.reserve(len);for (size_t i = 0; i < len; i++){tmp += _str[pos + i];}tmp += '\0';return tmp;}//默认从0位置开始size_t find(char ch, size_t pos = 0) {assert(pos < _size);for (size_t i = pos; i < _size; i++) {if (_str[i] == ch) {return i;}}return npos;}//默认0位置开始size_t find(const char* str, size_t pos = 0) {assert(pos < _size);char* ptr = strstr(_str, str);if (ptr) {return ptr - _str;}else {return npos;}}void append(const char* str) {size_t len = strlen(str);if (_size + len > _capacity) {reserve(_size + len);}//'\0'也要就行拷贝memcpy(_str + _size, str, len + 1);_size += len;}string& operator+=(char ch) {push_back(ch);return *this;}string& operator+=(const char* str) {append(str);return *this;}const char* c_str() const {return _str;}size_t size() const {return _size;}void clear() {_str[0] = '\0';_size = 0;}static size_t npos;protected:char* _str;size_t _size;size_t _capacity;};size_t string::npos = -1;//按照_size的大小来进行打印//不是碰到'\0'就停止ostream& operator<<(ostream& _cout, const string& str) {for (size_t i = 0; i < str.size(); i++){_cout << str[i];}return _cout;}//每次输入之前都要清空istream& operator>>(istream& _cin, string& str) {//清空str.clear();char ch;//给一buff数组来减小拷贝来提高效率int i = 0;char buff[128] = { 0 };//读取前置空格ch = _cin.get();while (ch == '\n' || ch == ' ')ch = _cin.get();while (ch != '\n' && ch != ' ') {buff[i++] = ch;if (i == 127) {buff[i] = '\0';str += buff;i = 0;}ch = _cin.get();}//如果i不等于0说明里面还有字符if (i != 0) {buff[i] = '\0';str += buff;}return _cin;}
}
如果有错误,欢迎各位大佬指正.
相关文章:
(c++)string的模拟实现
目录 1.构造函数 2.析构函数 3.扩容 1.reserve(扩容不初始化) 2.resize(扩容加初始化) 4.push_back 5.append 6. 运算符重载 1.一个字符 2.一个字符串 7 []运算符重载 8.find 1.找一个字符 2.找一个字符串 9.insert 1.插入一个字符 2.插入一个字符串 9.erase 10…...

一种通用图片红色印章去除的工具设计
朋友今天下午需要处理个事情,问我有没有什么好的办法能够去除,核心问题是要去除图片上的印章。记得以前处理过类似的需求,photoshop操作比较简单,本质是做运算。这种处理方式有很多,比如现在流行的大模型,一…...
企业应用AI对向量数据库选型思考
一、向量数据库概述 向量数据库是一种专门用于存储和检索高维向量数据的数据库系统,它能够高效地处理基于向量相似性的查询,如最近邻搜索等,在人工智能、机器学习等领域的应用中发挥着重要作用,为处理复杂的向量数据提供了有力的…...
时序数据库IoTDB安装学习经验分享
1. JDK安装问题 在安装IoTDB时,我遇到了“无法加载主类”的错误,这通常表明Java环境存在问题。尽管我能正确输出classpath和查询JDK版本,但问题依旧存在。经过查阅相关资料,我发现问题出在多余的classpath设置上。Java编译器和虚…...

RapidOCR集成PP-OCRv5_det mobile模型记录
该文章主要摘取记录RapidOCR集成PP-OCRv5_mobile_det记录,涉及模型转换,模型精度测试等步骤。原文请前往官方博客: https://rapidai.github.io/RapidOCRDocs/main/blog/2025/05/26/rapidocr%E9%9B%86%E6%88%90pp-ocrv5_det%E6%A8%A1%E5%9E%8B…...
当 Redis 作为缓存使用时,如何保证缓存数据与数据库(或其他服务的数据源)之间的一致性?
当 Redis 作为缓存使用时,保证缓存数据与数据库(或其他数据源)之间的一致性是一个核心挑战。通常,我们追求的是“最终一致性”,而不是“强一致性”,因为强一致性往往会牺牲性能和可用性,这与使用…...

Dify理论+部署+实战
概述 一个功能强大的开源AI应用开发平台,融合后端即服务(Backend as Service)和LLMOps理念,使开发者能够快速搭建生产级的生成式AI应用。 核心优势 直观的用户界面:提供简洁明了的操作界面,使得用户能够…...

内网穿透系列五:自建SSH隧道实现内网穿透与端口转发,Docker快速部署
以下是对这个自建SSH隧道工具的简单介绍: 一款基于OpenSSH构建的内网穿透与端口转发工具,通过SSH隧道技术实现支持所有TCP协议通信,包括SSH、HTTP、HTTPS等各类应用提供灵活部署方式,特别支持Docker容器化快速部署开源工具地址…...

桥梁进行3D建模时的数据采集、存储需求及技术参数
桥梁进行3D建模时的数据采集、存储需求及技术参数 1公里桥梁进行3D建模时的数据采集、存储需求及技术参数的详细分析 1. 照片数量估算 关键影响因素 桥梁类型:梁桥/拱桥/斜拉桥(结构复杂度不同) 建模精度:工程级(1-…...

Transformer架构技术学习笔记:从理论到实战的完整解析
引言:重新定义序列建模的里程碑 2017年,Vaswani等人在论文《Attention Is All You Need》中提出的Transformer架构,彻底改变了自然语言处理领域的游戏规则。与传统RNN/LSTM相比,Transformer具有三大革命性特征: 全注意…...

1、python代码实现与大模型的问答交互
一、基础知识 1.1导入库 torch 是一个深度学习框架,用于处理张量和神经网络。modelscope是由阿里巴巴达摩院推出的开源模型库。 AutoTokenizer 是ModelScope 库的类,分词器应用场景包括自然语言处理(NLP)中的文本分类、信息抽取…...
CPU服务器的主要功能有哪些?
服务器作为互联网社会中基础的网络设施,为企业提供了存储和传输文件的功能,而中央处理器作为服务器计算能力的核心部分,能够帮助企业进行十分复杂的科学计算任务,本文就主要来探索一下CPU服务器的主要功能都有哪些吧! …...
如何在 Vue.js 中集成 Three.js —— 创建一个旋转的 3D 立方体
在这篇文章中,我将向大家展示如何将 Three.js 与 Vue.js 结合,创建一个简单的 3D 场景,并展示一个旋转的立方体。通过这个简单的示例,你将学习到如何在 Vue 项目中集成 Three.js,以及如何创建动态的 3D 内容。 1. 安装…...

Java开发经验——阿里巴巴编码规范实践解析6
摘要 本文深入解析了阿里巴巴编码规范在数据库设计和Java开发中的实践应用。详细阐述了数据库字段命名、类型选择、索引命名等规范,以及Java POJO类的对应规范。强调了字段命名的重要性,如布尔字段命名规则、表名和字段名的命名禁忌等。同时,…...
docker常见考点
一、基础概念类 Docker与虚拟机的区别 Docker基于容器化技术,共享宿主机内核,资源消耗更少;虚拟机通过Hypervisor虚拟化硬件,资源占用高。Docker启动速度更快(秒级),虚拟机需要启动完整操作系统…...

工业自动化实战:基于 VisionPro 与 C# 的机器视觉 PLC 集成方案
一、背景介绍 在智能制造领域,机器视觉检测与 PLC 控制的无缝集成是实现自动化生产线闭环控制的关键。本文将详细介绍如何使用 C# 开发上位机系统,实现 Cognex VisionPro 视觉系统与西门子 S7 PLC 的数据交互,打造高效、稳定的工业检测方案。…...

C++ —— B/类与对象(中)
🌈个人主页:慢了半拍 🔥 创作专栏:《史上最强算法分析》 | 《无味生》 |《史上最强C语言讲解》 | 《史上最强C练习解析》|《史上最强C讲解》 🏆我的格言:一切只是时间问题。 目录 一、类的6个默认成员…...
Java网络编程与Socket安全权限详解
Socket安全权限控制 Java通过java.net.SocketPermission类实现对网络套接字访问的细粒度控制。该权限管理机制通常在Java策略文件中配置,其标准授权语法格式如下: grant {permission java.net.SocketPermission"target", "actions"; };目标主机与端口规…...

AXI协议乱序传输机制解析:提升SoC性能的关键设计
AXI 协议 Out-of-Order 传输机制 概述 AXI (Advanced eXtensible Interface) 协议支持乱序传输 (Out-of-Order) 机制,这是一种重要的性能优化特性,允许数据传输不按照发起顺序完成,从而提高总线带宽利用率和系统整体性能。 基本原理 通道…...

Qt实现csv文件按行读取的方式
Qt实现csv文件按行读取的方式 场景:我有一个保存数据的csv文件,文件内保存的是按照行保存的数据,每行数据是以逗号为分隔符分割的文本数据。如下图所示: 现在,我需要按行把这些数据读取出来。 一、使用QTextStream文本流的方式读取 #include <QFile>void readfil…...
分库分表后的 ID 生成方案
分库分表后的 ID 生成方案 一、问题背景 在分布式系统中,当单表数据量超过千万级时,通常会采用分库分表策略。此时传统的自增ID方案会面临以下问题: 不同分片可能生成相同ID(冲突)单调递增特性被破坏全局唯一性难以保证关键结论:分库分表环境下,ID生成必须满足全局唯一…...

进行性核上性麻痹健康护理全指南:从症状管理到生活照护
进行性核上性麻痹(PSP)是一种罕见的神经退行性疾病,主要影响运动、平衡及眼球运动功能,常表现为步态不稳、吞咽困难、眼球上视受限、情绪改变等。由于目前尚无根治方法,科学的健康护理对延缓病情进展、提升患者生活质量…...

openFuyao开源发布,建设多样化算力集群开源软件生态
openFuyao 开源发布 随着 AI 技术的高速发展,算力需求呈爆发式增长,集群已成为主流生产方式。然而,当前集群软件生态发展滞后于硬件系统,面临多样化算力调度困难、超大规模集群软件支撑不足等挑战。这些问题的根源在于集群生产的…...

第四十五节:目标检测与跟踪-Meanshift/Camshift 算法
引言 在计算机视觉领域,目标跟踪是实时视频分析、自动驾驶、人机交互等应用的核心技术之一。Meanshift和Camshift算法作为经典的跟踪方法,以其高效性和实用性广受关注。本文将从原理推导、OpenCV实现到实际案例,全面解析这两种算法的核心思想与技术细节。 一、Meanshift算法…...

Docker Desktop无法在windows低版本进行安装
问题描述 因工作需要,现在一台低版本的window系统进行Docker Desktop的安装,但是安装过程当中出现了报错信息 系统版本配置 原因分析: 关于本机查看了系统的版本号,版本号如下为1909,但是docker Desktop要求的最低的win10版本…...
SQL Server 简介和与其它数据库对比
SQL Server 是微软(Microsoft)开发的一种 关系型数据库管理系统(RDBMS),全称是 Microsoft SQL Server。 🔍 SQL Server 是什么? SQL Server 是一个功能强大、企业级的数据库平台,用…...

2025年- H56-Lc164--200.岛屿数量(图论,深搜)--Java版
1.题目描述 2.思路 (1)主函数,存储图结构 (2)主函数,visit数组表示已访问过的元素 (3)辅助函数,用递归(深搜),遍历以已访问过的元素&…...

自证式推理训练:大模型告别第三方打分的新纪元
1. 传统验证体系的困境与技术跃迁的必然性 1.1 传统验证器的局限性 现有强化学习框架依赖显式验证器对答案进行二值化判定,这种模式在数学、代码等可验证领域表现优异。某厂内部数据显示,传统R1-Zero方法在代码生成任务中准确率达92%,但切换…...

vue2使用el-tree实现两棵树间节点的拖拽复制
原文链接:两棵el-tree的节点跨树拖拽实现 参照这篇文章,把它做成组件,新增左侧树(可拖出)被拖节点变灰提示; 拖拽中: 拖拽后: TreeDragComponent.vue <template><!-- …...
前端开发中 <> 符号解析问题全解:React、Vue 与 UniApp 场景分析与解决方案
前端开发中 <> 符号解析问题全解:React、Vue 与 UniApp 场景分析与解决方案 在前端开发中,<> 符号在 JSX/TSX 环境中常被错误解析为标签而非比较运算符或泛型,导致语法错误和逻辑异常。本文全面解析该问题在不同框架中的表现及解…...