【python深度学习】Day 41 简单CNN
- 数据增强
- 卷积神经网络定义的写法
- batch归一化:调整一个批次的分布,常用与图像数据
- 特征图:只有卷积操作输出的才叫特征图
- 调度器:直接修改基础学习率
卷积操作常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
2. Flatten → Dense (with Dropout,可选) → Dense (Output)
作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。
一、数据增强
在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。
常见的修改策略包括以下几类
1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转
2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克
3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等
此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。
注意:数据增强一般是不改变每个批次的数据量,是对原始数据修改后替换原始数据。其中该数据集事先知道其均值和标准差,如果不知道,需要提前计算。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
二、CNN模型
卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。只需要定义几个参数即可
1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。
2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。
3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度
4. 步长(stride):卷积核的滑动步长,默认为1。
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__() # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3, # 输入通道数(图像的RGB通道)out_channels=32, # 输出通道数(生成32个新特征图)kernel_size=3, # 卷积核尺寸(3x3像素)padding=1 # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32, # 输入通道数(前一层的输出通道数)out_channels=64, # 输出通道数(特征图数量翻倍)kernel_size=3, # 卷积核尺寸不变padding=1 # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64, # 输入通道数(前一层的输出通道数)out_channels=128, # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1 # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU() # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4, # 输入维度(卷积层输出的特征数)out_features=512 # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x) # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x) # 批量归一化,不改变尺寸x = self.relu1(x) # 激活函数,不改变尺寸x = self.pool1(x) # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x) # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x) # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x) # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x) # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4) # -1自动计算批量维度,保持批量大小不变x = self.fc1(x) # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x) # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x) # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x) # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device) # 将模型移至GPU(如果可用)
1. batch归一化
Batch 归一化是深度学习中常用的一种归一化技术,用于加速模型收敛并提升泛化能力,位于卷积层后。
卷积操作常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差
旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。
通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),即把一堆杂乱无章、分布不同的数据规整到一个标准的样子。
1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;
2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。
深度学习的归一化有2类:
1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。
2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。
ps:这个操作在结构化数据中其实是叫做标准化,但是在深度学习领域,习惯把这类对网络中间层数据进行调整分布的操作都叫做归一化 。
2.特征图
卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度
特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性
3.调度器
ReduceLROnPlateau调度器适用于当监测的指标(如验证损失)停滞时降低学习率。是大多数任务的首选调度器,尤其适合验证集波动较大的情况
这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。
常见的优化器有 adam、SGD、RMSprop 等,而除此之外学习率调度器有 lr_scheduler.StepLR、lr_scheduler.ExponentialLR、lr_scheduler.CosineAnnealingLR 等。
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train() # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = [] # 存储所有 batch 的损失iter_indices = [] # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device) # 移至GPUoptimizer.zero_grad() # 梯度清零output = model(data) # 前向传播loss = criterion(output, target) # 计算损失loss.backward() # 反向传播optimizer.step() # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval() # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20 # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")
相关文章:
【python深度学习】Day 41 简单CNN
知识回顾 数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率 卷积操作常见流程如下: 1. 输入 → 卷积层 → Batch归一化层…...

基于RK3568/RK3588/全志H3/飞腾芯片/音视频通话程序/语音对讲/视频对讲/实时性好/极低延迟
一、前言说明 近期收到几个需求都是做音视频通话,很多人会选择用webrtc的方案,这个当然是个不错的方案,但是依赖的东西太多,而且相关组件代码量很大,开发难度大。所以最终选择自己属性的方案,那就是推流拉…...

解决 Win11 睡眠后黑屏无法唤醒的问题
目录 一、问题描述二、解决方法1. 禁用快速启动2. 设置 Management Engine Interface3. 允许混合睡眠其他命令 4. 修复系统文件5. 更新 Windows 或驱动程序6. 其他1)更改电源选项2)刷新 Hiberfil.sys 文件3)重置电源计划4)运行系统…...

[ElasticSearch] RestAPI
🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…...

Linux中的shell脚本
什么是shell脚本 shell脚本是文本的一种shell脚本是可以运行的文本shell脚本的内容是由逻辑和数据组成shell脚本是解释型语言 用file命令可以查看文件是否是一个脚本文件 file filename 脚本书写规范 注释 单行注释 使用#号来进行单行注释 多行注释 使用 : " 注释内容…...

dvwa3——CSRF
LOW: 先尝试change一组密码:123456 修改成功,我们观察上面的url代码 http://localhost/DVWA/vulnerabilities/csrf/?password_new123456&password_conf123456&ChangeChange# 将password_new部分与password_conf部分改成我们想要的…...

【学习笔记】Transformer
学习的博客(在此致谢): 初识CV - Transformer模型详解(图解最完整版) 1 整体结构 Transformer由Encoder和Decoder组成,分别包含6个block。 Transformer的工作流程大体如下: 获取每个单词的em…...

欢乐熊大话蓝牙知识12:用 BLE 打造家庭 IoT 网络的三种方式
🏠 用 BLE 打造家庭 IoT 网络的三种方式 不止是“蓝牙耳机”,BLE 还能把你家“点亮成精”! 👋 前言:BLE 不只是蓝牙耳机的“代名词” 蓝牙?很多人一听就联想到“耳机连接失败请重试”。但你知道吗?现在 BLE(Bluetooth Low Energy)在智能家居中已经偷偷搞起了大事情。…...

02.上帝之心算法用GPU计算提速50倍
本文介绍了上帝之心的算法及其Python实现,使用Python语言的性能分析工具测算性能瓶颈,将算法最耗时的部分重构至CUDA C语言在纯GPU上运行,利用GPU核心更多并行更快的优势显著提高算法运算速度,实现了结果不变的情况下将耗时缩短五…...

MES管理系统:Java+Vue,含源码与文档,实现生产过程实时监控、调度与优化,提升制造企业效能
前言: 在当今竞争激烈的制造业环境中,企业面临着提高生产效率、降低成本、提升产品质量以及快速响应市场变化等多重挑战。MES管理系统作为连接企业上层计划管理系统与底层工业控制之间的桥梁,扮演着至关重要的角色。它能够实时收集、分析和处…...

LeetCode算法题 (搜索二维矩阵)Day18!!!C/C++
https://leetcode.cn/problems/search-a-2d-matrix/description/ 一、题目分析 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 ta…...

VectorStore 组件深入学习与检索方法
考虑到目前市面上的向量数据库众多,每个数据库的操作方式也无统一标准,但是仍然存在着一些公共特征,LangChain 基于这些通用的特征封装了 VectorStore 基类,在这个基类下,可以将方法划分成 6 种: 相似性搜…...

HackMyVM-First
信息搜集 主机发现 ┌──(kali㉿kali)-[~] └─$ nmap -sn 192.168.43.0/24 Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-31 06:13 EDT Nmap scan report for 192.168.43.1 Host is up (0.0080s latency). MAC Address: C6:45:66:05:91:88 (Unknown) …...
30V/150A MOSFET 150N03在无人机驱动动力系统中的性能边界与热设计挑战
产品技术概述 150N03 是一款基于沟槽式工艺(Trench Technology)的N沟道功率MOSFET,其核心价值在于: 电压/电流规格:VDSS30V, ID150A (Tc25℃) 工艺特征:高密度元胞设计实现超低导通电阻 双面散热架构:顶部裸露铜架底…...
数据共享交换平台之数据资源目录
依据信息资源体系规范,构建多维度、多层级的资源目录体系,完整的展示和管理资源目录。资源目录提供以下功能: 多层级资源目录展示,能够将资源目录按照技术维度和管理维度进行分类管理,并能够将资源目录按照数据湖、基础…...

跨平台浏览器集成库JxBrowser 支持 Chrome 扩展程序,高效赋能 Java 桌面应用
JxBrowser 是 TeamDev 开发的跨平台库,用于在 Java 应用程序中集成 Chromium 浏览器。它支持 HTML5、CSS3、JavaScript 等,具备硬件加速渲染、双向 Java 与 JavaScript 连接、丰富的事件监听等功能,能处理网页保存、打印等操作,助…...

WEBSTORM前端 —— 第3章:移动 Web —— 第3节:移动适配
目录 一、移动Web基础 1.谷歌模拟器 2.屏幕分辨率 3.视口 4.二倍图 二、适配方案 三、rem 适配方案 四、less 1.less – 简介 2.less – 注释 3.less – 运算 4.less – 嵌套 5.less – 变量 6.less – 导入 7.less – 导出 8.less – 禁止导出 五…...
38.springboot使用rabbitmq
pom依赖 <!--amqp依赖,包含RabbitMQ--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency> 配置文件添加 spring:application:name: message…...

弱光环境下如何手持相机拍摄静物:摄影曝光之等效曝光认知
写在前面 博文内容为一次博物馆静物拍摄笔记的简单总结内容涉及:弱光环境拍摄静物如何选择,以及等效曝光的认知理解不足小伙伴帮忙指正 😃,生活加油 我看远山,远山悲悯 持续分享技术干货,感兴趣小伙伴可以关注下 _ 采…...
Selenium Manager中文文档
1. 什么是 Selenium Manager(测试版) Selenium Manager 是 Selenium 官方提供的命令行工具(用 Rust 实现),用于自动管理浏览器及其驱动(chromedriver、geckodriver、msedgedriver 等)。从 Sele…...
WEB安全--SQL注入--MSSQL注入
一、SQLsever知识点了解 1.1、系统变量 版本号:version 用户名:USER、SYSTEM_USER 库名:DB_NAME() SELECT name FROM master..sysdatabases 表名:SELECT name FROM sysobjects WHERE xtypeU 字段名:SELECT name …...

【HTML】基础学习【数据分析全栈攻略:爬虫+处理+可视化+报告】
- 第 102 篇 - Date: 2025 - 05 - 31 Author: 郑龙浩/仟墨 文章目录 HTML 基础学习一 了解HTML二 HTML的结构三 HTML标签1 标题2 文本段落3 换行4 加粗、斜体、下划线5 插入图片6 添加链接7 容器8 列表9 表格10 class类 HTML 基础学习 一 了解HTML 一个网页分为为三部分&…...
SAP Business ByDesign:无锡哲讯科技赋能中大型企业云端数字化转型
云端ERP时代,中大型企业的智能化引擎 在数字经济高速发展的今天,中大型企业面临着全球化竞争、供应链复杂化、数据安全等多重挑战。传统的本地化ERP系统已无法满足企业快速响应市场变化的需求,而SAP Business ByDesign(ByD&…...
华为OD机考2025B卷 - 无向图染色(Java Python JS C++ C )
最新华为OD机试 真题目录:点击查看目录 华为OD面试真题精选:点击立即查看 题目描述 给一个无向图染色,可以填红黑两种颜色,必须保证相邻两个节点不能同时为红色,输出有多少种不同的染色方案? 输入描述 第一行输入M(图中节点数) N(边数) 后续N行格式为:V1 V2表示…...
计算机网络学习20250528
地址解析协议ARP 实现IP地址和Mac地址的转换 ARP工作原理: 每台主机或路由器都有一个ARP表,表项:<IP地址,Mac地址,TTL>(TTL一般为20分钟) 主机产生ARP查询分组,包含源目的IP地…...

Next.js路由导航完全指南
在前端框架(如 React、Vue 等)或移动端开发中,路由系统是实现页面 / 界面导航的核心机制。Next.js 采用 文件系统路由(File System Routing),即根据项目目录结构自动生成路由。 Next.js 目前有两套路由解决…...

五、web安全--XSS漏洞(1)--XSS漏洞利用全过程
本文章仅供学习交流,如作他用所承受的法律责任一概与作者无关1、XSS漏洞利用全过程 1.1 寻找注入点:攻击者首先需要找到目标网站中可能存在XSS漏洞的注入点。这些注入点通常出现在用户输入能够直接输出到页面,且没有经过适当过滤或编码的地方…...

【C++高级主题】命令空间(六):重载与命名空间
目录 一、候选函数与命名空间:重载的 “搜索范围” 1.1 重载集的构成规则 1.2 命名空间对候选函数的隔离 二、重载与using声明:精准引入单个函数 2.1 using声明与重载的结合 2.2 using声明的冲突处理 三、重载与using指示:批量引入命名…...
利用 Python 爬虫获取淘宝商品详情
在电商领域,淘宝作为中国最大的在线零售平台,拥有海量的商品信息。对于开发者、市场分析师以及电商研究者来说,能够从淘宝获取商品详情信息,对于市场分析、价格比较、商品推荐等应用场景具有重要价值。本文将详细介绍如何使用 Pyt…...
动态拼接内容
服务器端模板引擎(Server-Side Template Engine) 的特性,比如 JSP(Java Server Pages)、ASP.NET、PHP 等技术中常用的 <% %> 语法。 它的核心作用是: 动态拼接内容:在 HTML 中嵌入编程语…...